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Problem. Compute the homology group of the following 2-complexes X:
a) The quotient of S2 obtained by identifying north and south poles to a point
b) S1 × (S1 ∨ S1)
c) The space obtained from D2 by first deleting the interiors of two disjoint subdisks in the interior of D2 and then
identifying all three resulting boundary circles together via homeomorphisms preserving clockwise orientation of the
circles
d) The quotient space of S1 × S1 obtained by identifying points in the circle S1 × {x0} that differ by a 2π

m rotation and
identifying points in the circle {x0} × S1 that differ by 2π

n rotation

a)

From Example 0.8, X ∼= S2 ∨ S1 so that Corollary 2.25 gives,

Hn(X) ∼= Hn(S2 ∨ S1) =

{
Z n ∈ {0, 1, 2}
0 Otherwise

(1)

b)

Let’s first establish what the H•(X) is via the Künneth Formula and then use cellular homology to verify. Firstly note
that for all n ∈ N∪{0},

TorZ
(
Hn(S1), Hn(S1)

)
= TorZ

(
Hn(S1), Hn(S1 ∨ S1

)
= TorZ

(
Hn(S1 ∨ S1), Hn(S1 ∨ S1)

)
= 0 (2)

since the only non-trivial groups are H1(S1) ∼= Z, H1(S1, S1) ∼= Z⊕Z [via Corollary 2.25] which are both free abelian.
Hence the Künneth formula reduces to the exact sequence,

0→
⊕
i+j=k

Hi(S
1,Z)⊗Z Hi(S

1 ∨ S1,Z)→ Hk(S1 × (S1 ∨ S1),Z)→ 0 (3)

Hence, Hk(S1 × (S1 ∨ S1),Z) ∼=
⊕

i+j=kHi(S
1,Z)⊗Z Hi(S

1 ∨ S1,Z) giving us:

H0(S1 × (S1 ∨ S1),Z) ∼= Z⊗Z ∼= Z
H1(S1 × (S1 ∨ S1),Z) ∼= Z×Z⊕Z⊗(Z⊕Z) ∼= Z3

H2(S1 × (S1 ∨ S1),Z) ∼= Z⊗(Z⊕Z) ∼= Z2 (4)

where the final inequalities come from the fact that the tensor product abelianizes the products.

Given this algebraic result, let’s verify it geometrically. Since S1×S1 is a torus, the geometric picture for S1× (S1∨S1)
is very similar and in fact, we can represent it as a mapping torus of a map g : S1 → S1 ∨ S1. From Example 2.48, we
see that if f, g : X ′ → X ′ are 1lX′ , then the mapping cylinder Z = X ′ × I/ ∼ is homeomorphic to X ′ × S1. In this case,
letting X ′ = S1 ∨ S1, we get the exact sequence,

· · · −→ Hn(S1 ∨ S1)
0−→ Hn(S1 ∨ S1) −→ Hn (X) −→ Hn−1(S1 ∨ S1)→ · · ·
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Note that the map that is trivial is due to the fact that f = g so f∗ = g∗ in the augmented Mayer-Vietoris Sequence of
Example 2.48. Now since H2(S1 ∨ S1) = 0, we have the exact sequence,

0 −→ H2(X) −→ H1(S1 ∨ S1) −→ 0

so that H2(X) ∼= H1(S1 ∨ S1) ∼= Z2. On the other hand for n = 1 we have the short exact sequence,

0 −→ H1(S1 ∨ S1) −→ H1(X) −→ H0(S1 ∨ S1)→ 0

which becomes the short exact sequence 0→ Z2 → H1(X)→ Z→ 0 which implies that H1(X) ∼= Z3. Finally, it is clear
that X is connected so H0(X) ∼= Z. Hence we’ve verified the algebraic result.

c)

We will place the following CW structure on X with 1 0-cell v, 3 1-cells a, b, c and 1 2-cell A:

v• • •A

a b

c

v v

Associated to this, we have the following chain complex,

0 −→ Z d2−→ Z3 d1−→ Z −→ 0

Firstly, it is clear that X is path-connected so H0(X) ∼= Z. Now ker d1 = Z3 since the boundaries of all of the 1-cells
are trivial. Now A is attached via the word [a, b]ca−1c−1 so that after abelianianization, d2A = −a. Hence Im d2 = 〈a〉
so H1(X) ∼= Z. Exactness implies that ker d2 = 0 so that we have:

Hk(X) =


Z if k = 0

Z2 if k = 1

0 otherwise

d)

We can start with the 1-skeleton for a torus, namely 1 0-cell v and 2 1-cells a, b arranged in the form of S1 ∨ S1. The
difference here is that we now attach the 2-cell A via the word anbma−nb−m in order to preserve the quotient. We have
the cell complex,

0 −→ Z d2−→ Z2 d1−→ Z −→ 0

This space is again clearly path-connected so H0(X) ∼= Z. Now all of the 1-cells end and begin on v, so ker d1 = Z2.
From the attaching word, we have d2 = 0 so H1(X) ∼= Z2, H2(X) = Z. Summary:

Hk(X) =


Z k = 0

Z2 k = 1

Z k = 2

0 else

10

Problem. Let X be the quotient space of S2 under the identifications x ∼ −x for x in the equator S1. Compute the
homology groups Hi(X). Do the same for S3 with the antipodal points of the equatorial S2 ⊂ S3 identified

2
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In the case of X = S2/ ∼, we give it the CW structure with 2 0-cells, {v0, v1}, 2 1-cells, {a, b}, and 2 2-cells, {A,B},
where the one skeleton is of the form,

•v0 •v1

a

b

We glue the 2-cell A along the word ab and the 2-cell B along the word a−1b−1. Under the quotient a = b, v0 = v1, so
the 2-cells are glued along 2a,−2a, respectively. Our chain complex is,

0 −→ Z2 d2−→ Z d1=0−→ Z −→ 0

The space is path-connected so we have H0(X) ∼= Z. Now ker d1 = Z since d1 = 0 and from the attaching map,
Im d2 = 〈2a〉. Hence H1(X) ∼= Z2. As such, we have H2(X) ∼= Z. Summary:

Hk(X) =


Z if k = 0, 2

Z2 if k = 1

0 else

In the case of Y = S3/ ∼, we give the same CW structure with two k-cells for k ∈ {0, 1, 2, 3}. In this case, the quotient
map identifies the 2-cells, 1-cells and 0-cells, i.e. A ∼ B, a ∼ b and v1 ∼ v2. As such we have the chain complex,

0 −→ Z2 d3−→ Z d2−→ Z d1−→ Z −→ 0

In this case Im d3 = 2A (by the same logic as before), so H3(Y ) ∼= Z. On the other hand, d2 = 0 since the identification
A ∼ B means that ∂A = ∂B = (a+ b)− (a− b) = 0 so H2(Y ) ∼= Z2. As before, d1 = 0 so that H1(Y ) ∼= Z. The space
is again path-connected so we have:

Hk(Y ) =

{
Z if k = 0, 1, 3

Z2 if k = 2

14

Problem. A map f : Sn → Sn satisfying f(x) = f(−x),∀x is called an even map. Show that an even map Sn → Sn

must have even degree and that the degree must in fact be zero when n is even. When n is odd show that ∃ maps of any
given even degree.

As per the hint, if f is even, then f̃ = q ◦ f , where q : Sn � Pn is the quotient map, is well-defined. In particular,
since f commutes with q in the sense that ι ◦ q ◦ f = f where ι is the inclusion ι : Pn ↪→ Sn, f factors through the
combination Sn → RPn → Sn. Now since Hn(RPn) = Z ⇐⇒ n is odd, the induced map on homology even gives,

Hn(Sn) ∼= Z q∗f∗−→ Hn(RPn)
ι∗−→ Hn(Sn)

If n is even, then an even map must have degree zero since the middle term would be 0.

Now let’s consider the case where n is odd. From the CW structure on RPn with a 1-cell in each dimension 0 ≤ k ≤ n,
it is clear that the pair (RPn,RPn−1) is good pair since the n cell can retract to RPn−1. Hence the long exact sequence
for relative homology and proposition 2.1. gives,

· · · −→

0︷ ︸︸ ︷
Hn(RPn−1) −→

Z︷ ︸︸ ︷
Hn(RPn) −→ Hn(RPn,RPn−1) ∼= Hn(RPn /RPn−1) −→

0︷ ︸︸ ︷
Hn−1(RPn−1) −→ · · ·
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where the last term in the sequence vanishes since n − 1 is even. Hence Hn(RPn) ∼= Hn(RPn /RPn−1). Now since
RPn /RPn−1 ∼= Sn (we are contracting the n − 1-skeleton to a point). When n is odd, we know Hn(RPn) = Z and
Hn(Sn) = Cn(Sn) = Z (where Cn is the nth cellular chain group). But the quotient map RPn → RPn /RPn−1 = Sn

sends the generator of Cn(RPn) to the generator of Cn(Sn), so the quotient map in fact induces an isomorphism on the
homology groups. As a result, given a map p : Sn → RPn, the map p∗ : Hn(Sn)→ Hn(RPn) will have p(1) = k; define
deg(p) = k.

Let g : Sn → RPn be the quotient map defined above; it is claimed that deg(g) = 2. To see this, let x ∈ RPn, so
g−1(x) = {x,−x}. Since g restricted to a neighborhood of x and −x is a homeomorphism, the local degrees around
x and −x are both 1, so the total degree, the sum of the local degrees, is deg(g) = 2. Hence g∗(1) = 2, so g∗ is the
doubling map. Now if f : Sn → Sn is an even map, then f∗ = h∗g∗. Note that f∗(1) = h∗(g∗(1)) = h∗(2), so f∗(1) = 2k
for some k, so deg(f) = 2k, which is even.

Now we will show that when n is odd, there exists an even map f : Sn → Sn of any given even degree. We know
deg(f) = 2k, where h∗(1) = k. We need for a given k ∈ Z, that ∃ an h : RPn → Sn such that h∗(1) = k. Note that this
is pretty much done in Example 2.31. Pick k points in RPn, and pick pairwise disjoint neighborhoods of these k points.
Let q : RPn →

∨
k S

n be the quotient map obtained by identifying the complement of these neighborhoods to a single
point, and let p :

∨
k S

n → Sn identify all the summands to a single sphere. If h = pq, then Example 2.31 showed that
h(1) = k.

19

Problem. compute Hi(RPn /RPm) for m < n by cellular homology, using the standard CW structure on RPn with
RPm as its m-skeleton

As before, the standard CW structure consists of 1 k-cell for all 0 ≤ k ≤ n. Under the quotient, all cells of dimension
k ≤ m are sent to a point. Hence we have a chain complex of the form,

n−m︷ ︸︸ ︷
Z dn−→ · · · dm+1−→ Z −→

m︷ ︸︸ ︷
0
dm−→ · · ·Z→ 0

This pretty much reduces to the standard case of Hk(RPn) for k > m. In particular, we have:

ker(di) =

{
Z i odd
0 i even

and

Im(di) =

{
0 i odd
2Z i even

Hence:

Hi(RPn /RPm) =


Z i = 0,m+ 1 (m odd), n (n odd)
Z2 i odd,m+ 1 ≤ i < n

0 otherwise

20

Problem. For finite CW complexes X,Y show that χ(X × Y ) = χ(X) · χ(Y ).

This is a straightforward computation. Firstly, note that,

χ(X)χ(Y ) =
∑
i

(−1)ibXi
∑
j

(−1)jbYj =
∑
i,j

(−1) =
∑
i,j

(−1)i+jbXi b
Y
j

where bi, bj are the associated Betti numbers. Each n-cell in X × Y is the product of an i-cell in X and an (n− i)-cell
in Y . Thus the number of n-cells in X × Y is

cn =
∑
i+j=n

bXi b
Y
j .

4
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As such we have the result:

χ(X × Y ) =
∑
n

(−1)ncn =
∑
n

(−1)n

 ∑
i+j=n

bXi b
Y
j

 =
∑
i,j

(−1)i+jbXi b
Y
j = χ(X)χ(Y ). (5)

21

Problem. If a finite CW complex X is the union of subcomplexes A and B, show that χ(X) = χ(A)+χ(B)−χ(A∩B).

This is pretty much immediate from inclusion-exclusion. Let bn be the number of n-cells in X, let bAn be the number
of n-cells in A, let bBn be the number of n-cells in B, and let bA∩Bn be the number of n-cells in A ∩ B. As A ∪ B = X,
every n-cell in X is either in A or B or both. To find bn, we start by considering the term bAn + bBn and then via
inclusion-exclusion, one sees that we need to subtract the cells in A∩B. Thus we have that cn = bAn + bBn − bA∩Bn . Using
this, we get

χ(X) =
∑
n

(−1)nbn =
∑
n

(−1)n(bAn + bBn − bA∩Bn )

=
∑
n

(−1)nbAn +
∑
n

(−1)nbBn −
∑
n

(−1)nbA∩Bn = χ(A) + χ(B)− χ(A ∩B).

24

Problem. Suppose we build S2 from a finite collection of polygons by identifying edges in pairs. Show that in the
resulting CW structure on S2 the 1 skeleton cannot be either of the two graphs shown on page 157, with five and six
vertices.

With this CW structure, it is clear that we can always project S2 ↪→ R3 onto R2, so that the image of the 1-skeleton
of S2 is a graph G embedded in R2. Moreover, we can choose this projection in such a way that the 2-simplices of the
CW structure on S2 are in bijective correspondence with the regions enclosed by the graph G.

Let the Euler characteristic of a graph have the natural definition, i.e. χ(G) = v− e+ f , for v is the number of vertices
in G, e is the number of edges in G, and f is the number of enclosed regions. We find that for any G that is the image
of the 1-skeleton of the CW structure on S2, then χ(G) = χ(S2) = 2. It is clear that two graphs on page 157 do not
have Euler characteristic 2 for the one on the left has v = 5, e = 10, f = 11, so χ = 6, and the one on the right has
v = 6, e = 9, f = 12, so χ = 9.

∴ The two graphs on page 157 cannot be the 1-skeleton of a CW structure on S2.

28

Problem. Use the Mayer-Vietoris sequence to compute the homology groups of the space obtained from a torus S1×S1

by attaching a Möbius band via a homeomorphism from the boundary circle of the Möbius band to the circle S1×{x0} in
the torus. Do the same for the space obtained by attaching a Möbius band to RP2 via a homeomorphism of its boundary
circle to the standard RP1 ⊂ RP2.

a)

Let Y be the Möbius strip. Let X be the space in question and let N be a neighborhood of the identified circle in X.
First let’s find a good cover: A = T2 ∪N ' T2 and B = Y ∪N ' S1, so both A and B are open with A ∪B = X. This
yields the Mayer-Vietoris sequence

· · · → Hn(A ∩B)→ Hn(A)⊕Hn(B)→ Hn(X)→ Hn−1(A ∩B)→ · · ·

Plugging in Hk(A) ∼= Hk(T2), Hk(B) ∼= Hk(S1) gives

5
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Hn(A) ∼= Hn(T 2) =


Z n = 0, 2

Z2 n = 1

0 otherwise

and

Hn(B) ∼= Hn(A ∩B) ∼= Hn(S1) =

{
Z n = 0, 1

0 otherwise

When n ≥ 3, the Mayer-Vietoris sequence gives so Hn(X) = 0 for all n ≥ 3. Looking at the low-dimensional Mayer-
Vietoris sequence for reduced homology groups gives:

0 // H2(T 2)⊕H2(S1) // H2(X)
ψ // H1(S1)

Φ // H1(T 2)⊕H1(S1)
ϕ // H1(X) // 0

Using the identification of Y and T 2, the map Φ : H1(S1) → H1(T 2) ⊕ H1(S1) is given by Φ(1) = ((2, 0), 1) (the
boundary circle of Y gets sent twice around one of the 1-cells of T 2), so Φ is injective and Im(Φ) = 2Z⊕Z = ker(ϕ)
(the last equality because the sequence is exact). Since Φ is injective and the sequence is exact, we know ψ is the zero
map, so we get the exact sequence

0→ H2(T 2)⊕H2(S1)→ H2(X)→ 0

As a result, H2(X) ∼= H2(T 2) ⊕ H2(S1) = Z. Since the Mayer-Vietoris sequence above is exact, we see that ϕ is
surjective, so

H1(X) ∼= (H1(T 2)⊕H1(S1))/ ker(ϕ) = (H1(T 2)⊕H1(S1))/ Im(Φ) = Z3 /(2Z⊕Z) = Z⊕Z2

Adding in the fact that X is path-connected, we have:

Hn(X) =


Z n = 0, 2

Z⊕Z2 n = 1

0 otherwise

b)

Let X be the space in question, and let Y be the Möbius band in X. Let N be a neighborhood of the identified circle in
X, let A = RP2 ∪N and let B = Y ∪N , so A,B are open in X and A ∪B = X, so we get the Mayer-Vietoris sequence

· · · → Hn(A ∩B)→ Hn(A)⊕Hn(B)→ Hn(X)→ Hn−1(A ∩B)→ · · ·

Clearly A ' RP2, B ∼ Y ∼ S1, and A ∩B ∼ RP1 ∼ S1, so

Hn(A) ∼= Hn(RPn) =


Z n = 0

Z2 n = 1

0 otherwise
Hn(B) ∼= Hn(A ∩B) ∼= Hn(S1) =

{
Z n = 0, 1

0 otherwise

As before if n ≥ 3, Hn(X) = 0 for all n ≥ 3 and X is path-connected. Now for dimensions 1, 2:l Mayer-Vietoris sequence
for reduced homology groups gives the following:

0 // H2(X)
ψ // H1(S1)

Φ // H1(RP2)⊕H1(S1)
ϕ // H1(X) // 0

Hence ψ is injective and ϕ is surjective. The identification of Y and RP2 gives a map Φ : H1(S1)→ H1(RP2)⊕H1(S1)
is defined by Φ(1) = (0, 1) (the boundary circle of Y gets sent twice around RP1, which becomes a 0 when passing to

6
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the homology group Z2). Thus Φ is injective, so Im(ψ) = ker(Φ) = 0. ψ is then a trivial map; the only way this is
possible is if H2(X) = 0. This gives us a short exact sequence

0→ Z→ Z2⊕Z→ H1(X)→ 0

From the properties of short exact sequences, we thus know that H1(X) ∼= (Z2⊕Z)/Z = Z2. Summary:

Hn(X) =


Z n = 0

Z2 n = 1

0 otherwise

29

Problem. The surface Mg of genus g, embedded in R3 in the standard way, bounds a compact region R. Two copies of
R, glued together by the identity map between their boundary surfaces Mg, form a closed 3-manifold X. Compute the
homology groups of X via the Mayer-Vietoris sequence for this decomposition of X into two copies of R. Also compute
the relative groups Hi(R,Mg).

Recall that we can draw the 1-skeleton of a surface of genus g as a 4g-gon:

e1

e2

e3

en−1

en

•v1

•v2•v3

•

•
...

• · · · •vn−1

•vn

Let’s consider the case g = 2, since we can get the higher genuses inductively. We can draw the 1-skeleton of the space
X2 as an octogonal prism:

b1

a1

b1

b2

a2

•

••

•

•
a1

•b2

a2

•

•b1

a1

b1

b2

a2

•

••

•

•
a1

•b2
a2
•

•

This has a fairly straightforward cell structure, with two 2-cells {A,B} for the edge-labelled faces, a 3-cell that connects
the two faces (which become equal under the quotient) and 8 edges and 8 vertices (this is due to the quotient of the
boundaries). Hence our chain complex is of the form,

0 −→ Z d3=0−→ Z d2−→ Z8 d1−→ Z8 d0−→ 0

Under the quotient, the two 2-cells are equal so d3 = 0 and H3(X2;Z) = Z. Now the attaching map for each 2-cell
is
∏
i[ai, bi], but this is already trivial in Z8 so Im d2 =

∏
i[ai, bi]. Note that ker d1 =

∏
i[ai, bi] from the standard

boundary map for Mg. Hence H2(X2;Z) = H1(X2;Z) = 0. The space is path-connected so H0(X2;Z) = Z. This
trivially generalizes to the genus g case, Xg:

Hk(Xg) =

{
Z if k = 0, 3

0 else

7
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We can also get this from the Mayer-Vietoris Sequence. Let A = B = R,A ∩ B = Mg. Note that H̃k(R) = 0 unless
k = 1 when H̃1(R) = H̃1(∨gS1) = Zg. Then the reduced Mayer-Vietoris sequence is:

· · · −→ H̃k(A ∩B) ∼= H̃k(Mg) −→ H̃k(A)⊕ H̃k(B) ∼= H̃k(R)⊕ H̃k(R) −→ H̃k(X) −→ · · ·

This is a 3-manifold, so higher groups vanish. Top cohomology reduces to the exact sequence,

0→ H̃3(X)→ H̃2(A ∩B) ∼= Z→ 0

The other two sequences end up giving trivial groups since we find that H̃2(X) ∼= Z2g /Z2g and H̃1(X) = 0.

Since (R,Mg) is a good pair, H̃•(R/Mg) ∼= H•(R,Mg). Now it is claimed that R/Mg
∼= S2∨S1. This is easily seen from

the octogon drawing, since the quotient sends to 2-cells to a point. This gives the "earring" shape of Example 0.8, so:

Hn(R,Mg) ∼= Hn(S2 ∨ S1) =

{
Z n ∈ {0, 1, 2}
0 Otherwise

31

Problem. Use the Mayer-Vietoris sequence to show there are isomorphisms H̃n(X ∨ Y ) ∼= H̃n(X) ⊕ H̃n(Y ) if the
basepoints of X and Y that are identified in X ∨ Y are deformation retracts of neighborhoods U ⊂ X and V ⊂ Y .

Let x0 be the basepoint of X∨Y , with "good" neighborhoods of x0 U ⊆ X and V ⊆ Y so that X∨Y = (X∪V )∪(Y ∪U).
This gives the Mayer-Vietoris sequence

· · · → H̃n((X ∪ V ) ∩ (Y ∪ U))→ H̃n(X ∪ V )⊕ H̃n(Y ∪ U)→ H̃n(X ∨ Y )→ H̃n−1((X ∪ V ) ∩ (Y ∪ U))→ · · ·

Since U and V deformation retract onto x0, X∪V ' X and Y ∪U ' Y , so H̃n(X∪V ) ∼= H̃n(X) and H̃n(Y ∪U) ' H̃n(Y ).
Note that (X ∪ V ) ∩ (Y ∪ U) = (U ∪ V ), giving us the following exact sequence:

· · · → H̃n(U ∪ V )→ H̃n(X)⊕ H̃n(Y )→ H̃n(X ∨ Y )→ H̃n−1(U ∪ V )→ · · ·

By choice of "good" neighborhoods of x0, U ∪ V is contractible, so H̃n(U ∪ V ) = 0 for all n. Hence

0→ H̃n(X)⊕ H̃n(Y )→ H̃n(X ∨ Y )→ 0

∴ H̃n(X ∨ Y ) ∼= H̃n(X)⊕ H̃n(Y ).

32

Problem. For SX the suspension of X, show by a Mayer-Vietoris sequence that there are isomorphisms H̃n(SX) ∼=
H̃n−1(X) for all n.

Let a and b be the two 0-cells of SX and define A = SX \ {a} and B = SX \ {b}. By construction, we have A∩B ' X
and A,B ' CX (i.e. contact the punctured cone to the base X). Note that A∪B = X, so we can use the Mayer-Vietoris
sequence

· · · → H̃n(A ∩B)→ H̃n(A)⊕ H̃n(B)→ H̃n(SX)→ H̃n−1(A ∩B)→ · · ·

Since CX is contractible, H̃n(A) = H̃n(B) = 0, so H̃n(A)⊕ H̃n(B) = 0; this gives the exact sequence

0→ H̃n(SX)→ H̃n−1(X)→ 0

∴ H̃n(SX) ∼= H̃n−1(X).

8
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33

Problem. Suppose the space X is the union of open sets A1, . . . , An such that each intersection Ai1 ∩ · · · ∩ Aik , ij ∈
{1, . . . , n}, ij 6= ik ⇐⇒ j 6= k is either empty or has trivial reduced homology groups. Show that H̃i(X) = 0,∀i ≥ n− 1
and give an example showing this inequality is best possible for each n

Suppose that Xk = A1 ∪ · · · ∪Ak and Yk = Ak ∩ · · · ∩An. By construction we have Xn = X and Y1 =
⋂n
i=1An. Using

induction we will show that ∀k, 1 ≤ k ≤ n, then

H̃i(Xk ∩ Yk+1) = 0

∀i ≥ k − 1. Notice that when k = n, Xk ∩ Yk+1 = X, so in particular this shows that H̃i(X) = 0 for all i ≥ n− 1.

The base case is k = 1 is trivial by assumption.

Now we prove the inductive step.

Xk ∩ Yk+1 = (A1 ∩ Yk+1) ∪ · · · ∪ (Ak−1 ∩ Yk+1) ∪ (Ak ∩ Yk+1)

= (Xk−1 ∩ Yk+1) ∪ Yk

By induction, H̃i(Xk−1 ∩ Yk+1) = 0 for all i ≥ k − 2. We have the following Mayer-Vietoris sequence:

H̃i((Xk−1 ∩ Yk+1) ∩ Yk)→ H̃i(Xk−1 ∩ Yk+1)⊕ H̃i(Yk)→ H̃i(Xk ∩ Yk+1)→ H̃i−1((Xk−1 ∩ Yk+1) ∩ Yk)

Observe that (Xk−1 ∩ Yk+1) ∩ Yk = Xk−1 ∩ Yk, and by induction H̃i(Xk−1 ∩ Yk) = 0 for all i ≥ k − 2. Also, we know
that H̃i(Yk) = 0 for all k. We thus have the following exact sequence:

H̃i(Xk−1 ∩ Yk+1)→ H̃i(Xk ∩ Yk+1)→ H̃i−1(Xk−1 ∩ Yk)

By induction, both the left and right terms are zero for all i ≥ k − 1, and thus H̃i(Xk ∩ Yk+1) = 0 for all i ≥ k − 1. In
particular, when k = n, we have Xk ∩ Yk+1 = Xn = X, so H̃i(X) = 0 for all i ≥ n− 1.

This is the best possible situation. To see this, first notice that the smallest n we have to look at is n = 3. Given an
n ≥ 3 consider X = Sn−2. It is easy to see that we can decompose Sn−2 into n open sets such that he intersection of
any number of these open sets is either empty or has trivial reduced homology groups; such a acyclic cover is often
used in sheaf cohomology. This also holds arbitrary n. However it is clear that H̃n−2(Sn−2) = Z. This means that
H̃n−1(X) = 0 so that this is the best case scenario.
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Problem. Use the Mayer-Vietoris Sequence to show that a nonorientable closed surface X (or more generally a finite
simplicial complex X for which H1(X) contains torsion) cannot be embedded a subspace of R3 in such a way as to have
a neighborhood homeomorphic to the mapping cylinder of some map from a closed orientable surface S to X.

Suppose that H1(X) has torsion and that ι : X → R3 is a topological embedding such that ∃N ⊂ R3 with N ∼= M ,
whereM is the mapping cylinder of a map f : S → X. More specifically we defineM := S×I/ ∼ where ∼ is the relation
(s, 1) ∈ S× I ∼ f(s) ∈ X. By assumption, M can be embedded in R3. Note that this implies that N retracts onto X so
that the splitting lemma gives Hn(N) ∼= Hn(X)⊕Hn(N,X). Now let ι(X) = X̃ ⊂ R3 and let A = R3−X̃, B = N ⊂ R3

so that A ∩ B = N \ X̃. Now since N ∼= M and X̃ ∼= q(S × {1}) ⊂ M , where q : S × I → M is the quotient map, this
means that A ∩ B ∼= M − q(S × {1}) ∼= S × [0, 1) ' S so that the classification of closed, orientable surfaces says that
S ∼= Mg for some g > 0 and,

H̃n(A ∩B) ∼= H̃n(S) =

{
Z2g n = 1

0 otherwise
(6)

Hence the (reduced) Mayer-Vietoris Sequence1 for (A,B,R3) is:

· · · H̃n+1(R3) H̃n(A ∩B) H̃n(A)⊕ H̃n(B) H̃n(R3) · · ·

0 H̃n(S) H̃n(R3−X̃)⊕ H̃n(X)⊕ H̃n(N,X) 0

k∗ − l∗ ∂

∼=

(i∗, j∗)

∼=

k∗ − l∗

∼=

∂

∼=

0 (i∗, j∗) k∗ − l∗

1Valid since A ∩B 6= ∅
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For the case of n = 1 this reduces to the short exact sequence,

0→ Z2g → H̃1(R3−X̃)⊕ H̃1(X)⊕ H̃1(N,X)→ 0 (7)

which implies that Z2g ∼= H̃1(R3−X̃)⊕H̃1(X)⊕H̃1(N,X). But by hypothesis, H̃1(X) has torsion, giving a contradiction!

∴ X cannot be embedded in R3
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