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Problem. From the long exact sequence of homology groups associted to the short exact sequence of chain complexes
0 −→ Ci(X)

n−→ Ci(X) −→ Ci(X;Zn) −→ 0, deduce immediately that there are short exact sequences,

0 −→ Hi(X)/nHi(X) −→ Hi(X;Zn) −→ n-Torsion(Hi−1(X)) −→ 0

where n-Torsion(G) is the kernel of the map g 7→ ng. Use this to show that H̃i(X;Zp) = 0,∀i and for all primes p iff
H̃i(X) is a vector space over Q for all i

The long exact sequence of interest is,

· · · Hn(X) Hn(X) Hn(X;Zm)

Hn−1(X) Hn−1(X) · · ·

ñ fn

∂

fn−1

where ñ is the map n after descending under the quotient. Now note that Im ñ = ker f , which means that ker f = nHi(X).
The map f is surjective if Hn(X) is integral homology.1 so that by the first isomorphism theorem it induces a map
f̃ : Hn(X)/ ker f = Hi(X)/nHi(X)

∼=−→ Hn(X;Zm). In the case the Hi(X) has rational or real coefficients, the map
f̃ is zero so that Hi(X)/nHi(X) = 0. In the general case, we still get an injective map f̃ since Hi(X)/nHi(X) is the
set of homologous chains in X that are not multiples of n, thus respecting the coefficients of Hn(X;Zn). Now since
Im ∂ = ker fn−1 = n-Torsion(Hi−1(X)) we can form the sequence

0 −→ Hi(X)/nHi(X)
f̃−→ Hi(X;Zm)

∂−→ n-Torsion(Hi−1(X))
fn−1−→ 0

Exactness of the first map implies that f̃ is injective, while exactness of the second map comes from the fact that ∂f = 0.

(=⇒) Suppose that H̃i(X;Zp) = 0,∀i and for all primes p. Let’s first define a map p : Hi(X;Zm) → Hi(X)/nHi(X)

such that pf̃ = 1l : Hi(X)/nHi(X). In particular, if {σn} are the generators of Hi(X;Zm), since f̃ is an injective homo-
morphism, there is a subset A ⊂ {σn} such that A is the images of the generators of Hi(X)/nHi(X). Hence if [

∑
n cnσn]

is a chain in Hi(X;Zm), then p[
∑
n cnσn] =

∑
{n:σn∈A} cnσ̃n where σ̃n are the generators of Hi(X)/nHi(X). By con-

struction, we have pf̃ = 1l so that by the Splitting Lemma we have Hi(X;Zm) = Hi(X)/nHi(X)⊕n-Torsion(Hi−1(X)).
Since H̃i(X;Zp) = 0,∀i, p, this implies that Hi(X) is p-torsion-less for all i and that Hi(X) is infinitely-generated since
Hi(X) = pHi(X)∀p, i. Note that this second fact plus unique factorization shows that Hi(X) is a Z-module and since
it is a free Z-action (due to the lack of torsion), Hi(X) is a Z-vector space. Since this means that Hi(X) = nHi(X)
and any Z-vector space is isomorphic to Zn for some n, this implies that Hi(X) 6∼= Zn for any n. Combining all of thes
fact we see that Hi(X) must be free, abelian, torsion-free and infinitely-generated so Hi(X) must at least be a Q-vector
space.2

(⇐=) This is immediate from the splitting, since Q has no torsion and Hi(X;Q)/nHi(X;Q) = 0.
1I think this is true for any finitely-generated, Abelian group G, with H•(X) = H•(X;G) as long as there exists a surjective group

homomorphism G→ Zm
2There’s no reason that we can’t extend this to any field of characteristic zero, right? If there is an analogue of sheaf cohomology but for

homology, perhaps we can choose the local ring of units of the sheaf of holomorphic functions OX .
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Problem. For X a finite CW complex and F a field show that the Euler Characteristic χ(X) can also be computed by
the formula χ(X) =

∑
n(−1)n dimHn(X;F ), the alternating sum of the dimensions of the vector spaces Hn(X;F ).

Let Ck := Hk(X
n, Xn+1) be the Cellular Chain Groups. Then if ck = |Ck|, the Euler Characteristic is defined as

χ(X) =
∑
k(−1)kck. The Cellular Chain Complex is,

0 −→ Cn
dn−→ Cn−1

dn−1−→ · · ·C1
d1−→ C0

d0−→ 0

If we let Bk be the set of k-boundaries and Zk be the set of k-cycles, then we have the short exact sequences of vector
spaces,

0 −→ Zk −→ Ck
dk−→ Bk−1 −→ 0

0 −→ Bk −→ Zk −→ Hk −→ 0

where Hk = Zk/Bk. In particular, this gives ck = dimCk = dimZk + dimBk = dimHk + dimBk−1 so that

χ(X) =
∑
k

(−1)k dimZk +
∑
k

(−1)k dimBk +
∑
k

(−1)k dimBk−1 =
∑
k

(−1)k dimHk

where the last equality comes from the fact that the Bk, Bk−1 sums form a telescoping series. In particular since
Hk = Hk(X;F ), this is the desired result.

§1.3 Problems

2

Problem. Show that if p1 : X̃1 → X1 and p2 : X̃2 → X2 are covering spaces, so is their product p1 × p2 : X̃1 × X̃2 →
X1 ×X2

By definition, this implies that ∃ covers {U1
i }, {U2

j } of X̃1, X̃2 such that ∀x1 ∈ X1, x2 ∈ X2 there exists U1
i 3 x1, U2

i 3 x2
such that p−11 (U1

i )
∼= tαŨ1

α, p
−1
2 (U2

i )
∼= tβṼ 2

β with Ũ1
α
∼= U1

i , Ṽ
2
β
∼= U2

i ,∀α, β, i. Finally note tht if (x, y) ∈ X1 × X2,
then (p1 × p2)−1(x, y) = {(u, v) | u ∈ p−11 (x), v ∈ p−12 (y)}.

As {U1
i } covers X1 and {U2

i } covers X2, then {U1
i × U2

i } is an open cover of X1 ×X2. Let (x, y) ∈ X1 ×X2, so there
exists a U ∈ {U1

i } containing x and a U ′ ∈ {U2
i } containing y with p−11 (U) = tαŨ1

α and p−12 (U ′) = tβṼ 2
β . Thus

U × U ′ ∈ {U1
i × U2

i } is a neighborhood of (x, y) with

(p1 × p2)−1(U × U ′) = tα,βŨ1
αṼ

2
β

This is a disjoint union of open sets in X̃1×X̃2, since Ũα∩Ũα′ = ∅, Ṽβ∩ Ṽβ = ∅ for α 6= α′, β 6= β′, and Ũα× Ṽβ ∼= U×U ′.
Thus (X̃1 × X̃2, p1 × p2) is a covering space of X1 ×X2.

4

Problem. Construct a simply-connected covering space of the space X ⊂ R3 that is the union of a sphere and a diameter.
Do the same when X is the union of a sphere and a circle intersecting it in two points

Let’s first describe some of the geometric intuition attached to this space. Pictorally, we have,
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Now since S2 is simply connected, any non-trivial loop must pass through the diameter. For example, the path in red (on
the left sphere) is a loop that is not homotopic to a trivial loop. As such, it is easy to conjecture that the fundamental
group of this space is Z; this can be formalized using van Kampen’s theorem by considering the path-connected open
sets A1, A2 ⊂ X with A1 ∩A2 path-connected. For example, suppose that A1 is equal to the sphere minus the diameter
so that A1

∼= S2 − {N,S} ∼= S1 × R and let A2 be the union of a half-open arc on S2 containing the endpoint of the
diameter and the diameter. In the above picture, A1 is shaded in red while A2 is in green. The intersection A1∩A2 is an
open arc so A1 ∩A2 is path-connected and π1(A1 ∩A2, x0) = 0 for any x0 ∈ A1 ∩A2. Moreover, π1(A1) = Z, π1(A2) = 0
so that van Kampen’s theorem gives π1(X) = Z.

Given these (somewhat) geometric facts, intuition dictates that one should try to construct a covering space analogous
to the covering space R → S1. In particular, since the generator of π1(X) is any loop that goes through the diameter
once, we can generalize the helix construction by joining together copies of spheres linked together by closed intervals.
This way, a degree k loop lifts to a path that passes through k spheres and k closed intervals. This space Y is,

· · · · · ·

This is simply connected since it is homotopy equivalent to the wedge sum of an infinite number of 2-spheres; the fact
that it is a covering space is effectively the same proof that R covers S1. It is clear that anywhere on S2−{N,S} or on
the interior of the diameter, this defined a covering space, so we only have to consider the cover of N,S. However, this
is also straightforward, for if we choose an orientation on each of the closed interval pieces, we distinguish endpoints of
the intervals in Y and map them to N,S.

Let’s again approach this geometrically. By choosing intersecting a plane that contains the intersecting circle and looking
at the intersection of this plane with X, we will get a 1-dimensional shape that looks like,

We can use this as a 1-skeleton X1 for X. Using van Kampen’s theorem, it is clear that we can show that π1(X1) ∼= Z3,
which each generator corresponding to either a loop in one of the circles or a loop in the "intersecting" circle (actually,
more like a not-so-smooth ellipse). When we attach the 2-cells to form X, an application of Proposition 1.26 tells us
that π1(X) = Z2. Given this, we can attempt to construct a lattice of spheres in the same spirit at the previous covering
space, except that we are instead mimicking the covering space of T2. This space looks like,

· · · · · ·

· · · · · ·

· · · · · ·

This is again simply connected because it is homotopy equivalent to the wedge sum of an infinite number of copies3 of
S2 and the argument that this is a covering space is the same as before.

3One thing that I’m not sure of is if the morphism π1 deals well with infinite wedge sums since I’m not sure if the free product has any
constraints on "finitely-generated." I don’t think that the free product has any finitely-generated constraints, but regardless it will not affect
this problem.
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Problem. Let X be the Hawaiian Earring and let X̃ be the covering space on page 79. Construct a two-sheeted covering
space Y → X̃ such that the composition Y → X̃ → X of the two covering spaces is not a covering space.

Consider the following space Y ,

· · · · · ·

•

•

•

•

•

•

•

•

•

•

This is a 2-sheeted covering space of the chain of Hawaiian Earrings on page 79, since any neighborhood of a vertex in
X̃ is covered by two copies of the same neighborhood in the above space. The key feature here is presence of loops that
connect the two vertices. Hence the inverse image of the second-to-outer most loop in X in X̃ is an infinite collection of
loops each of which have a different inverse image in the space above. In particular, an "outer" loop in X̃ as an inverse
image in Y corresponding to a different integer number of loops; in the diagram above, these are the colored loops.
Hence, Y does not cover X

7

Problem. Let Y be the quasi-circle, a closed subspace of R2 consisting of a portion of the graph y = sin(1/x), the
segment [−1, 1] in the y-axis and an arc connecting these two pieces. Collapsing the segment of Y in the y-axis to a
point gives a quotient map f : Y → S1. Show that f does not lift to the covering space R→ S1, even though π1(Y ) = 0.
Thus the local path-connectedness of Y is a necessary hypothesis in the lifting criterion

Suppose that we have the quotient map f : Y → S1so that our goal is to show that there does not exist a lift f̃ : Y → R.
Now suppose that f does lift to f̃ : Y → R and let γ : [0, 1] → S1 be a loop that travels around S1 once (degree 1),
so in particular γ is not homotopic to the constant loop. Hence if γ̃ is a lift of γ, then γ̃(0) 6= γ̃(1). Now consider
the map γ′ = f−1(γ) : [0, 1] → Y . Since f̃ is a lift of f , then (letting p : R → S1 be the covering map), pf̃(γ) = γ.
However, by choice of γ (i.e. choosing γ such that its not nullhomotopic), in order to have pf̃(γ′) = γ, γ′ would have to
travel across the oscillatory part of sin(1/x) and to the segment in the y-axis, which is impossible, since Y is not locally
path-connected at the limit line-segment of sin(1/x).
∴6 ∃ such a lift f̃

9

Problem. Show that if a path-connected, locally-path connected space X has π1(X) finite, then every map X → S1 is
nullhomotopic

Since π1(X) is finite, it is finitely generated and any map f : X → S1 induced a map f∗ : π1(X)→ S1. If f∗ is trivial,
then the map is nullhomotopic so lets assume that f∗ is non-trivial. In this case, at least one generator of π1(X) must
map to a non-trivial element of π1(S1) ∼= Z. Let this generator be g ∈ π1(X) so that by finiteness, there exists an n ∈ N
such that gn = 1l. Since f∗ is a homomorphism, this implies that 1lπ1(S1) = f∗(1lπ1(X)) = f∗(g

n) = f∗(g)
n. But this

implies that f∗(g) 6= 1lπ1(S1) is an element of finite order in π1(S1), which cannot be true. Hence f∗ must be trivial.

Now let p : R → S1 be the helical covering map of S1. From Proposition 1.33, ∃f̃ : R → X iff f∗(π1(X)) ⊆
p∗(π1(R)) = 0, which is true from the preceding paragraph. Now any lift f̃ : X → R is nullhomotopic by the homotopy
f̃t(X) = (1− t)f̃(x)+ tf(x0), where x0 is the distinguished basepoint. Hence ft = pf̃t : X → S1 is a nullhomotopy of f .

12

Problem. Let a and b be the generators of π1(S1 ∨ S1) corresponding to the two S1 summands. Draw a picture of the
covering space of S1 ∨ S1 corresponding to the normal subgroup generated by a2, b2, (ab)4 and prove that this covering
space is indeed the correct one.

4



Math 6510
Professor Hatcher

Homework 11
Net ID: tc328

Tarun Chitra
May 19, 2011

Since a covering space of S1∨S1, thought of as a graph, is a graph, we first try to draw graphs with the desired relations.
The relations a2, b2 are much easier to add into an arbitrary graph, so let’s try to construct a graph such that (ab)4 = e.
In particular, an octogon (as a cycle) will satisfy this relation. Hence we have,

ab

ab

where the blue edges correspond to b and the red edges correspond to a. This is a covering space since all covers of
S1 ∨ S1 need to satisfy the condition that each node serves at the endpoint for an incoming and an outgoing edge for
each generator a, b.

25

Problem. Let ϕ : R2 → R2 be the linear transformation ϕ(x, y) = (2x, y/2). This generates an action of Z on
X = R2−{0}. Show this action is a covering space action and compute π1(X/Z). Show that the orbit space is non-
Hausdorff and describe how it is a union of four subspaces homeomorphic to S1 × R, coming from the complementary
components of the x-axis and the y-axis

Firstly note that the hyperbolas xy = c, c ∈ R are invariant under the action induced by ϕ. Let’s show that ϕ induces
a covering space action.

Covering Space Action

The Z-action induced by ϕ is n · (x, y) = (2nx, y/2n). We need to show that for each (x, y) ∈ R2, there exists a
neighborhood U ⊂ R2 of (x, y) such that g1 6= g2 implies g1(U) ∩ g2(U) = ∅. Now consider a closed ball B of radius
r = supx′,y′∈B

√
(x′ − x)2 + (y′ − y)2 around a point (x, y) ∈ R2. Note that Bn := n · B is an ellipsoid centered at

(2nx, y/2n) with axes of length an = 2−nrn, b = 2nrn, where rn = supx′,y′∈B
√
22n(x′ − x)2 + 2−2n(y′ − y)2. We want

to show that there exists r > 0 such that Bn ∩Bm = ∅. The distance dn,m between the centers of the two balls Bn, Bm
is defined by

d2n,m = (2n − 2m)2x2 + (2−n + 2−m)2y2

We want dn,m > max{an, am}, dn,m > max{bn, bm} for all n,m. However if we choose an arbitrary (x′, y′) ∈ ∂B that
gives rn, this constraint reduces to two inequalities to solve for two unknown variables (x′, y′). A choice of x′, y′ deter-
mines r and hence such an open set U exists.
∴ ϕ induces a covering space action

X is not Hausdorff

Firstly note that the family of hyperbolas xy = c give a 1-foliation of R2. This means that for each (x′, y′) ∈ R2,∃c ∈ R
such that x′y′ = c. Since each hyperbola xy = c is invariant under the Z-action of ϕ, each hyperbola corresponds to
a distinct point in the quotient X/Z. However, every hyperbola in the family xy = c intersects. To see this, suppose
that xy = c1 and xy = c2 are hyperbolas in R2. Now for n,m ∈ N define xn = c1/n, yn = n and x′m = c2/m, y

′
m = m

so that xnyn = c1, x
′
my
′
m = c2. However given ε > 0, it is clear that for some N,M ∈ N, we have |xn − x′n| < ε so that

as n,m ↑ ∞, xn → x′n. The same holds if we swap the definitions of xn, yn. Hence every hyperbola intersects and thus
under the quotient, no two points can have disjoint neighborhoods since every point is on a hyperbola.

π1(X/Z) = Z2

5



Math 6510
Professor Hatcher

Homework 11
Net ID: tc328

Tarun Chitra
May 19, 2011

Since X = R2−{0} ' S1, π1(X) ∼= Z and since X is path-connected and locally path-connected, we can try to use
Proposition 1.40 to deduce π1(X/Z). From the Proposition we have π1(X/Z)/p∗(π1(X)) = π1(X) = Z; moreover from
the injectivity of p∗ and p∗(π1(X)) ⊂ π1(X/Z), we know that p∗(π1(X)) = Z so that π1(X/Z) = Z2

Finally, we need to describe how X/Z is the union of four subspaces homeomorphism to S1 × R. Consider the four
quadrants of R2−{0} and define the R in S1 × R to be the distance from the origin in the quadrant we are focusing
on. The orbits of the action by Z are all contained in the hyperbolas xy = c where c is in the R-coordinate. However,
since Z is a discrete doubling action, the entirety of each hyperbola is not in one equivalence class. In fact, it is easy to
see that the action of Z on a single hyperbola is equivalent to the action of Z on R given by translation. As a result,
the orbit space of this action on a single hyperbola is the circle S1 (as this is the orbit space of Z acting on R by
translation). Thus we get a copy of S1 for each c > 0, giving us that the orbit space of Z acting on a single quadrant
is S1 × (0,∞) ∼= S1 × R. This holds for all four quadrants, so X/Z is the union of four subspaces homeomorphic to
S1 × R.
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