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Problem. If X0 is the path-component of a space X containing the basepoint x0, show that the inclusion X0 ↪→ X
induces an isomorphism π1(X0, x0)→ π1(X,x0).

We know that ι∗ : π1(X0, x0) → π1(X,x0) is a group homomorphism and moreover that ι∗ must be injective since
any loop based at x0 and in X0 must be a loop in X as well. Hence we only need to show that ι∗ is surjective. Suppose
[x] ∈ π1(X,x0). Since x : I → X is a loop, it is in particular a path from x0 to x0. This means that x needs to be
a continuous map. Hence any loop based at x0 must be contained within X0 since the map would not be continuous
if Im(x) ⊂ X intersects a different component. Thus there must be some class of loops [x′] ∈ π1(X0, x0) such that
ι∗([x

′]) = [x].

12
Problem. Show that every homomorphism π1(S1)→ π1(S1) can be realized as the induced homomorphism ϕ∗ of a map
ϕ : S1 → S1.

Suppose that f : π1(S1)→ π1(S1) is a homomorphism. Since π1(S1) ∼= Z, the image of f is completely determined
by f([ω1]) (or f(1) if we consider f as a map Z→ Z). Since f maps loops to loops, that means that there is some class
of loops [ωk], k ∈ Z such that f([ω1]) = [ωk]. However, note that the degree k map ϕk : S1 → S1, θ 7→ kθ or eiθ 7→ eikθ

has an induced map that sends [ω1] to [ωk]. To see this, let γ : I → S1 be the loop γ(x) = e2πix. Then ϕk ◦γ(x) = e2πikx

which is simply ωk. Since we’ve shown that (ϕk)∗([ω1]) = f∗([ω1]), this means that (ϕk)∗ ≡ f∗.

13
Problem. Given a space X and a path-connected subspace A containing the basepoint x0, show that the map π1(A, x0)→
π1(X,x0) induced by the inclusion A ↪→ X is surjective iff every path in X with endpoints in A is homotopic to a path
in A

(⇒) Suppose that ι∗ is surjective and let x0 ∈ A be a basepoint. This means that every loop based at x0 ∈ A ⊂ X in
X is homotopic to a loop contained in A. Since A is path-connected, we know that π1(A, x0) ∼= π1(A, x1),∀x0, x1 ∈ A.
Now suppose that γ : I → X, γ(0) = x1, γ(1) = x2, x1, x2 ∈ A is a path in X with endpoints in A. Since A is a
path-connected, ∃ paths γ1 : I → A, γ1(0) = x0, γ1(1) = x1 and γ2 : I → A, γ2(0) = x0, γ2(1) = x2. Hence γ̄1 · γ · γ̄2 is a
loop in X based at x0. This is more easily seen in the following diagram:

X

A

x0

x1

x2

y1

y2

γ

γ1
γ2

Γ

Γ1

Γ2

1



Math 6510
Professor Hatcher

Homework 2
Net ID: tc328

Tarun Chitra
February 10, 2011

Since ι∗ is surjective, ∃ a loop Γ : I → A,Γ(0) = Γ(1) = x0 that is homotopic to γ̄1 · γ · γ̄2. Now denote1 y1 :=
Γ
(
1
3

)
∈ A, y2 := Γ

(
2
3

)
∈ A. Since A is path-connected, there exists paths Γ1 : I → A,Γ1(0) = y1,Γ1(0) = x1 and

Γ2 : I → A,Γ2(0) = y2,Γ2(0) = x2. Now we can construct a path η : I → A between x1, x2 as,

η(t) =


Γ̄1(3t) t ∈ [0, 13 ]

Γ(t) t ∈ [ 13 ,
2
3 ]

Γ2(3t− 2) t ∈ [ 23 , 1]

(1)

See the diagram for intuition.
(⇐) This is straightforward: If every path in X with endpoints in A is homotopic to a path in A, then a loop

(which is also a path) based at x0 in X is homotopic to a loop based at x0 in A. This is precisely the statement that
π1(A, x0)→ π1(X,x0) is surjective.
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Problem. Show that there are no retractions r : X → A in the following cases:

(a). X = R3 with A any subspace homeomorphic to S1

(b). X = S1 ×D2 with A its boundary torus S1 × S1

(c). X = S1 ×D2 with A the circle in the figure on page 39

(d). X = D2 ∨D2 with A its boundary S1 ∨ S1

(e). X a disk with two points on its boundary identified and A its boundary S1 ∨ S1

(f). X the Möbius band and A its boundary circle

(a)

Suppose that a retraction r : R3 → A,A ∼= S1 existed. Then proposition 1.15 implies that ∃ a homomorphism
{0} = π1(R3) ↪→ π1(A) = Z, a contradiction.

(b)

Suppose that ∃ a retraction r : S1 ×D2 → ∂(S1 ×D2) = S1 × S1. Since S1, D2 are path-connected, proposition 1.12
implies that π1(S1×D2) ∼= π1(S1)×π1(D2) ∼= Z, π1(S1×S1) ∼= Z2. Since r exists, this means that we have an injective
homomorphism Z2 → Z, a contradiction.

(c)

Suppose that such a retraction r : X � A exists. Then this implies that we can contract S1×D2 to the non-trivial knot
(It’s the Torus Knot K1,1) A. However, π1(S1 ×D2) ∼= π1(S1)× π1(D2) ∼= Z which implies that S1 ×D2 retracts onto
the central, meridional S1. However, A is a non-trivial knot and by the discussion on Torus Knots in section 1.2 and the
introduction to chapter 1, we know that there doesn’t exist an isotopy (or even a homotopy) between the unknot (the
meridional circle) and the non-trivial knot in A. Since A has two links, the Wirtinger Presentation theorem guarantees
that π1(A) has at least two generators. This implies that there is no injective homomorphism of π1(A)→ π1(X).

(d)

Suppose that ∃ a retraction r : D2 ∨D2 → S1 ∨ S1. Since D2 ∨D2 is contractible to the join point, π1(D2 ∨D2) = 0.
On the other hand, π1(S1 ∨S1) = Z ∗Z, so that the existence of r and proposition 1.1.5 imply that there is an injective
group homomorphism Z ∗Z→ 0, a blatant contradiction.

(e)

A disk with two points identified is homotopic to S1 (see picture). If such a retraction D2/ ∼→ S1 ∨ S1 existed then
this means that there exists an injective group homomorphism Z ∗Z = π1(S1 ∨ S1)→ π1(D2/ ∼) = π1(S1) = Z.

1The choice of 1
3
, 2
3

is arbitrary; in general one can choose arbitrary points in I)
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(f)

Suppose that X is the Möbius Strip and A is a component of ∂X ∼= S1 tS1. Now suppose that there exists a retraction
r : X � A. Recall that the Möbius Strip has the following fundamental polygon:

The above line represents the "equatorial" line on the Torus. Since retractions take loops to loops, this means that
the above loop would be mapped to a loop in A. This means that the above line could be send up to the top or bottom of
the above polygon. However, because of the quotient, we have to continuously deform the loop in the following manner:

→ →

which is not the same as what would happen under the retraction.

17
Problem. Show that there are infinitely many retractions S1 ∨ S1 → S1

Firstly, we know of the following type of retraction, which simply contracts one circle to a point:

−→ −→

Now geometrically it is easy to picture (were wedge sum embedded in R2) "folding the circles" along their intersecting
point (x0, y0). More formally, this is equivalent to projecting a point of one of the circles onto the other via a quotient.
In particular, modding out by the equivalence relation θ0 ∼ θ1 ⇐⇒ eiθ0 = eiθ1 , where θ0, θ1 are the angle forms on the
two circles of S1 ∨ S1. Pictorically, this quotient does the following:

Now note that this quotient is constructed by looking at what is effectively the identity map: If θ0, θ1 are the same
relative to a fixed abscissa (say, the positive x-axis), then we set θ0, θ1 to be equal under the quotient. Similarly, we
could define a quotient θ0 ∼ θ1 ⇐⇒ einθ0 = eiθ1 for some n ∈ Z. This is effectively a "twisting" of one circle as we
project onto the second. For example, the mapping in the n = 2 case (i.e. the doubling map) is depicted below.

Hence the map that retracts onto the S1 with angle form θ1 has an infinite number of retractions that arise via a
quotient map of the form einθ. Note that the degree n and degree m maps are homotopic ⇐⇒ m = n, for otherwise the
induced homomorphism from the degree n map could take [ωn] to [ωm], a contradiction. In fact, since the set {einθ}n∈Z
is a basis for L2(S1, dθ), we can use any measurable function S1 → R with norm 2π to define the quotient. To see this,
simply consider the Fourier Decomposition of f ∈ L2(S1, dθ) as f(θ) =

∑
n∈Z ane

inθ. Recall that Parseval’s Identity
says that

∑
n∈Z |an|2 = 1

2π

∫
S1 |f(x)|2dx. Hence if ‖f‖L2(S1) = 2π, we see via the decomposition that f maps S1 into

S1. Intuitively, this means that the function f correctly measures the circumference of the unit S1.
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Extra
Problem. Let X be the closed orientable surface of genus 2. Construct a homomorphism from the fundamental group
of X onto a free abelian group of rank 4 (the direct sum of four copies of an infinite cyclic group) such that the four
curves labeled a, b, c, d in the figure are sent to generators of the four infinite cyclic direct summands.

Let’s first try to do this intuitively, using the fundamental polygon for a oriented, compact, connected genus g
surface. After gaining some intuition, we can use van Kampen’s Theorem to construct π1(Σg), where Σg is the unique
(up to homeomorphism) oriented, compact, connected genus g surface. Topologically, we can construct this using a
2-dimensional CW complex. Suppose that we have 4g 0-cells that are connected by 1-cells (arcs) such that we have a
4g-gon for the 1-skeleton of our CW complex. The image of this is below:

b1

a1
bgag

bg

ag

. . . · · ·
b1

a1

Now attach a 2-cell along the word a1b1a
−1
1 b−11 . . . agbga

−1
g b−1g . By this construction of the 1-skeleton, the word

a1b1a
−1
1 b−11 . . . agbga

−1
g b−1g is empty. Up to this point our CW complex is homeomorphic to a hemisphere. Now quotient

by the relations indicated on the 1-skeleton to get the genus g surface. This is a relation that is added to the relation
for the wedge sum of g copies of S1. Intuition tells us that since the two generators of each π1(T2) ↪→ π1(Σg) commute,
we should have a two figure eights at the points {xi}g−1i=1 used to define the connected sum Σg ∼= T2 #T2 # · · ·#T2. As
such, we can take a guess at π1(Σg), namely (the quotations are there because we haven’t used basepoints):

π1(Σg)” ∼= ”(∗gi=1 Z
2)/({[ai, bi] = 1,∀i ≤ g}) (2)

Now this is quite close to the actual group presentation, except that the ai, bi are all at different basepoints. Based on
the fundamental polygon, if the basepoint x0 is the first vertex (i.e. the vertex before the a1, then we can construct
each ai, bi (the two loops on the ith copy of T2 \{p} ↪→ Σg, by using the change of basepoint homomorphism to map
x0 = (θ1, φ1) (on a chart around the copy of T2 that x0 is on). This is more easily seen in the following diagram, where
the basepoint change homomorphism for the longitudinal loops:

As such, we can construct π1(X,x0) by constructing all of the ai in this manner. However, the commutation rule for
loops in the same embedded submanifold2 changes when we fix our basepoint. As one might guess from the fundamental
polygon the only relation we end up getting is a1b1a−11 b−11 . . . agbga

−1
g b−1g so that we have:

π1(Σg) ∼= 〈a1, b1, . . . , ag, bg|a1b1a−11 b−11 . . . agbga
−1
g b−1g 〉 (3)

Hence for Σ2, we have a simple map π1(Σg) → Z2×Z2, since Z2×Z2 = π1(Σg)/{[ai, bj ]}, where [ai, bj ] is the
commutator subgroup aibja

−1
i b−1j of π1(Σg). Since we only have two generators, this will end up giving us the free

Abelian group on four generators (it makes the relation a1b1a
−1
1 b−11 . . . agbga

−1
g b−1g = e redundant). In this case, we

have the sequence of quotients F2 → π1(Σg) → π1(Σg)/{[ai, bj ]}. All the maps are homomorphisms and as we will
learn later, the Hurewicz theorem claims that the quotient of π1 by the commutator subgroup is isomorphic to the first
homology group H1.

2Actually, for a connected sum M#N , there exists embedded copies of M \ {p}, N \ {p}
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