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Notational Note: In any presentation of a group G, I will explicitly set the relation equal to e as opposed to simply
writing a presentation like G ∼= 〈a, b, c, d|abcd−1〉. This is a bit untraditional, but it will remove any possible confusion.

�1.2 Problems

2

Problem. Let X ⊂ Rm be the union of convex open sets X1, · · · , Xn such that Xi ∩ Xj ∩ Xk 6= ∀i, j, k. Then X is
simply-connected

E�ectively, we mainly need to show that the intersection of two convex sets is convex, for then the van Kampen
Theorem gives π1(X,x0) = 0,∀x0 ∈ X. First, let's establish that X is path-connected so that up to isomorphism, our
computation of π1(X,x0) is independent of basepoint. Each Xi is path-connected, since the de�nition of convex means
that ∀x, y ∈ Xi, tx+ (1− t)y ∈ Xi. Since Xi ∩Xj 6= 0,∀i, j, then a path between x ∈ Xi, x̂ ∈ Xj is simply γ ∗ γ̂, where
γ(t) = tx+ (1− t)y, γ̂(t) = ty + (1− t)x̂ for y ∈ Xi ∩Xj .

Now suppose that X,Y ⊂ Rm are convex sets. Now let x, y ∈ X ∩ Y . Then by the de�nition of convexity, it is clear
that tx + (1 − t)y ∈ X and tx + (1 − t)y ∈ Y implies tx + (1 − t)y ∈ X ∩ Y . This implies that π1(Xi ∩Xj ∩Xk) = 0
and as such the van Kampen Theorem gives π1(X,x0) = ∗iπ1(Xi, x0) = 0.

3

Problem. Show that the complement of a �nite set of points in Rn is simply-connected if n ≥ 3.

From example 1.15, we know that Rn \{x} is homeomorphic to Sn−1 × R (both are path-connected). In fact,
since Rn \{x} ∼= B(x, r) \ {x} ∼= Sn−1 × R, where B(x, r) is a ball of radius r centered at x, we can use an inductive

argument to show that Rn \{x1, x2, x3, . . . , xk} ∼=
∨k
i=1 S

n−1 × R. Example 1.15 is the base case, so now assume that

Rn \{x1, . . . , xk−1} ∼=
∨k−1
i=1 S

n−1 × R which is path-connected. Since cut points are topological invariants, this means

that we are considering
∨k−1
i=1 (S

n−1 × R) \ {(x, y)}, where x ∈ Sn−1, y ∈ R. For n ≥ 3, Sn−1 \ {x} is homeomorphic 1

to Rn−1 so this implies the the set Ay = {(z, y) : z ∈ Sn−1} is homeomorphic to a copy of Rn−1 which is homotopy
equivalent to a point. By contracting Ay, we have constructed the wedge sum of Sn−1×R>y ∪{y} and Sn−1×R<y ∪{y},
by identifying the copies of y (Note that R>y = {x ∈ R : x > y},R<y = {x ∈ R : x < y}). This is homeomorphic to

(Sn−1 × R) ∨ (Sn−1 × R) so that
∨k−1
i=1 S

n−1 × R ∼=
∨k
i=1 S

n−1 × R.
Now from example 1.21 and path-connectivity, we have π1(

∨k
i=1 S

n−1 × R) ∼= ∗ki=1π1(S
n−1 × R) = ∗ki=1π1(S

n−1)×
π1(R). Since n > 3, Proposition 1.14 says that π1(S

n−1) = 0 so that π1(Rn \{x1, . . . , xk}) = 0.

4

Problem. Compute the fundamental group of the complement of n-lines that pass through the origin in R3

Suppose that X ⊂ R3 is the union of n lines through the origin. It is claimed that a presentation for π1(R3 \X,x0)
is,

π1(R3 \X,x0) ∼=

{
〈g1, g2, . . . , g2n|g1g2 · · · g2n = e〉 if n > 1

Z if n = 1
(1)

Note that the choice of basepoint will not matter as the space is path-connected (This is e�ectively proved by the
homeomorphisms in the �gures on the next page.) We can prove this by induction. The base case is R3 \{(x(t), y(t), z(t)) :
t ∈ R} where (x(t), y(t), z(t)) is a parametrization of the line ` removed. Note that the intersection of the plane
Pt := {(x′, y′, z′) : x ∈ R and x′ = x(t), y′, z′ ∈ R and y′ 6= y(t), z′ 6= z(t)} with R3 yields a punctured plane which we
proved is homotopic to S1. Note that the set of such planes is indexed by R and that {Pt : t ∈ R} = R3 \{`} so that

1Actually, this is a di�eomorphism; it's simply the stereographic projection
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R3 \` which is homotopy equivalent to S1 ×R. Since open cylinders deformation retract to S1 and all of the homotopy
equivalent spaces are path connected, Proposition 1.18 says that π1(R3 \{`}, x0) ∼= Z,∀x0 ∈ R3 \{`}.

Now let's consider the higher cases. The methodology isn't exactly an inductive step (it would be a bit awkward
to formulate this proof with an inductive step), but one can see via the �gures provided how it would be possible to
turn this into an inductive proof. Using the same logic as in the base case, we can consider a one-parameter family of
planar foliations Pt of R3 \X and show that ∀t ∈ R such that Pt 6= R3 \{~0}, Pt is simply R2 \{x1(t), x2(t), . . . , xn(t)}.
Let t′ ∈ R be such that Pt′ = R3 \{~0}; such a plane must exist since the common zero locus of all the lines is the origin.
This means that for t = t′,Pt′ is homotopy equivalent to S1 while for t 6= t′,Pt is homotopy to the many punctured
plane. As we showed in the previous problem, this is homotopy equivalent to a bouquet of circles,

∨n
i=1 S

1. Finally, our
punctured foliation of R3 \X decomposed as the disjoint union of two one-parameter families of such planes (i.e. the
family of planes Pt with moduli t < t′, t > t′) and a punctured plane at t = t′, so that we e�ectively have a space that
is homotopy equivalent to a cylinder S1 × [−ε, ε] with n-cylinders glue to each end, S1 × ±ε. Geometrically, one can
envision this as the "doubled pair of pants," which is homeomorphic to a sphere with 2n perforations or punctures. The
picture for n = 2 is below:

∼=

× ×

× ×

Now we can apply the van Kampen Theorem to get the presentation (1). Assume without the loss of generality that
we have all of the 2n-punctures on some single hemisphere of S2, all of which are at least a distance (latitude) ε > 0
away from the equator. Since changing the location of a puncture corresponds to an a�ne transformation of the line
corresponding to the puncture (i.e. a homeomorphism!), this can be done. Let U1 be the open hemisphere (up to the
equator) that contains the 2n-punctures and let U2 be the union of the other open hemisphere (up to the equator) and
an open annulus containing the equator up to the ε latitude line. In pictures, this is the following:

× ×
× ×

← ε→

← U2

U1 →

Now note that U1 ∩U2 is an annulus which in particular can retract to it's boundary circle. Hence π1(U1 ∩U2, u) ∼=
Z,∀u ∈ U1 ∩ U2. Since U2

∼= D2, we have π1(U2) ∼= {0}. Thus we are left with the job of computing π1(U1, ũ), ũ ∈ U1.
Since U1

∼= R2 \{x1, x2, . . . , x2n} we need to compute the fundamental group of the multipunctured plane. Since the
translation map τ~x : R2 → R2, τ~x(~u) = ~x + ~u is a homeomorphism, we can assume without the loss of generality that
the 2n punctures are on the x-axis at the points (0, i), i ∈ {1, 2, 3, . . . , 2n}. Since [0, 1] is contractible, we are considering
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the fundamental group of the following space (for the case of n = 2):

•x0 •x1 · · · •x2n−1 •x2nγ →

This clearly retracts to

2n︷ ︸︸ ︷
S1 ∨ S1 ∨ · · · ∨ S1, which by Example 1.21 has the presentation 〈g1, . . . , g2n〉, where gi are

the loops that go around the point xi from the basepoint ũ. Now note that the loop denoted γ in the �gure above
corresponds to a loop in U1 ∩ U2. This is the loop that goes around all the points x0, x1, . . . , x2n from a basepoint
ũ. Hence, we have: [γ] = [g1g2 · · · g2n]. By the van Kampen Theorem, we mod out the subgroup generated by this
equivalence class; since we know that π1(U1 ∩U2) ∼= Z, this means that we only need to send the generator g1 · · · g2n to
the trivial loop. This gives the the presentation (1).

8

Problem. Compute the fundamental group of two tori S1 × S1 identi�ed on circles S1 × {x0} ↪→ S1 × S1

Let X be the space of interest; since it is a quotient of two disjoint tori, it is path-connected. Formally, the 1-skeleton
of this space will be the following:

b

a

b d

a c

c

dU1 U2

As indicated in the above drawing, U1, U2 are neighborhoods of each 2-cells attached to this skeleton representing
one torus. Under the indicated quotients, each U1 is homotopy equivalent to a torus, so π1(Ui, x0) = Z,∀x0 ∈ T2. Hence

by van Kampen's Theorem, we have π1(X,x0) ∼= π1(U1)∗π1(U2)
N

∼= Z2∗Z2

N where N is the normal subgroup generated by
the loop in π1(U1 ∩ U2, x0) ∼= Z, since the loop b contracts to a circle under the quotient. This implies that bd−1 is
trivial so that the group presentation is:

π1(X,x0) ∼= 〈a, b, c, d|[a, b] = [c, d] = e, bd−1 = e〉 (2)

10

Problem. Consider two arcs α, β embedding in D2 × I (see �gure on page 53). The loop γ is obviously null-homotopic
in D2 × I but show that there is no null-homotopy of γ in the complement of α ∪ β.

Let's use a homotopy equivalence to send D2 × I to S2 so that this problem reduces to the case of Example 1.23.
The copies of D2 on the boundary are contractible, so that if we contract them, we get the suspension of S1, with two
interlocked loops; see the �gure below.

γ

α

β

' γ̃

β̃

α̃

This is homotopic to S2 since the two cones can be resolved smoothly2, so that we've reduced the problem to the

2There is a rather nice morphism of varieties in algebraic geometry called the blow-up which gives the explicit homotopy via a singularity
resolution. Let us describe it heuristically, so that we can get an idea of how the homotopy works. The top of the cone is a singularity (the
tangent space degenerates to a point), so the blow-up process "cuts" a little ε neighborhood around the point of the cone and glues a 2-cell
by attaching the boundary to the (former) boundary of the ε-neighborhood. Then by relating ε and the radius R of the 2-cell that was glued
on (i.e. something along the lines of ε ∝ 2πR), we can expand the ε-neighborhood so that as ε ↑ h, where h is the height of the cone, we get
the upper hemisphere of S2 and as ε ↓ 0 we degenerate to the cone.
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case of Example 1.23. Here we see π1(X,x0) ∼= Z⊕Z and as such γ is a non-trivial loop (geometrically, it is a meridianal
loop).

17

Problem. Show that π1(R2 \Q2) is uncountable

Note: I will assume knowledge of some basic analytic properties of irrational and rational numbers, such as the
density of Q in R.

Let I be the set of irrational numbers and let X := R2 \Q2. As a set, we have

X =
{
(x, y) ∈ R2 : x, y ∈ I, or x ∈ R, y ∈ I, x ∈ I, y ∈ R

}
Moreover, X is considered a topological space under the inherited subspace topology of R2. We have a few facts from
point-set topology to establish �rst:

Claim. X is path-connected

Proof. Suppose (x, y), (x′, y′) ∈ X so that at least one coordinate in each element is irrational. Now suppose without
the loss of generality that x ∈ I. There is a path between (x, y) and an element (a, b) ∈ I× I, namely the path
γ : I → X, γ(t) = (x, y + t(b − y)). Now if γ̃ : I → I× I ⊂ X is a path in I× I that begins at (a, b), it is claimed that
γ ∗ γ̃ is continuous as the two paths arrive at the same point. Since the set of irrationals is a disconnected space3 we
only require γ(1) = γ̃(1) to ensure continuity. Since this was assumed in the construction of γ̃, γ ∗ γ̃ is continuous.

Hence, we only have to show that we can construct paths in I× I. However, this is precisely what we did before; to
see this, suppose (a, b) ∈ I× I, (a′, b′) ∈ I× I. An explicit path between (a, b) and (a′, b′) is ξ ∗ ζ, where ζ : I → I× I,
ξ : I → I× I are de�ned by

ζ(t) = (a+ t(a′ − a), b) ξ(t) = (a, b+ t(b′ − b))

Given that X is path-connected (unlike R \Q, which is totally disconnected as per the footnote), we need to be

slightly more careful than one is while proving that π1(R \Q) is uncountable. Now let (a, b)(â, b̂) ∈ X and let γ̂ be a

loop based at (a, b) that passes through (â, b̂). Such a loop exists, since X is path-connected. The goal is to show that
for any other (ã, b̃) ∈ π1(X, (a, b)), the loop γ̃ based at (a, b) that goes through (ã, b̃) is not homotopic to γ̂. Based on

the proof of path-connectedness, we can assume without the loss of generality4 that (a, b), (â, b̂) ∈ I× I. The picture to
keep in mind is the following:

(a, b)

(â, b̂)

(ã, b̃)

Now suppose that a homotopy of loops H : I × I → X,H(s, 0) = γ̂(s), H(s, 1) = γ̃(s) existed. Then this map would
have to be continuous in both s, t. Consider the diagonal map d : I → I × I, d(k) = (k, k). Since H is continuous,
H ◦d : I → X is also continuous. However, since X is a totally disconnected space which implies that there exist closed,
proper X0, X1 ⊂ X,X = X0 tX1 so that

I = (H ◦ d)−1(X) = (H ◦ d)−1(X0 tX1) = (H ◦ d)−1(X0) t (H ◦ d)−1(X1)

which implies that I is disconnected, a contradiction. Note that the above implicitly also relies on the fact that
R× I, I×R are also disconnected (although not totally disconnected).

From the �rst result, we know that for x0 ∈ X, there are an uncountable number of loops based at x0 that pass
through a di�erent irrational. From the proof above, we see that none of these loops are homotopic to each and since
X is path-connected, we only need to compute π1(X,x0) at one point. Hence, π1(X,x0) must be uncountable.

3Proof : Let r1, r2 ∈ Q, r1 < r2. The interval (r1, r2) ∩ I is open in I since (r1, r2) is open in R. The complement of (r1, r2) ∩ I is
((−∞, r1] ∪ [r2,∞)) ∩ I. But since r1, r2 ∈ Q, ((−∞, r1] ∪ [r2,∞)) ∩ I = ((−∞, r1) ∪ (r2,∞)) ∩ I so that (r1, r2) is also closed in I. This
means that there is a non-trivial clopen subset of I, hence I is disconnected. In fact, I is totally disconnected, we know that given any i ∈ I,
there exist r1, r2 ∈ Q such that ∀ε > 0, ‖i− r1‖R2 , ‖i− r2‖R2 < ε so that the set {i} is open in I.

4If (a, b), (a′, b) ∈ X and a ∈ Q and γ(t) = (a+ t(a′ − t), b) then the homotopy H(t, s) = γ(st) shows that γ is null-homotopic.
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Extra Problem

Problem. Let X be a disk, an annulus or a Möbius band, including the boundary circle or circles,

∂X ∼=

{
S1 if X is a disk

S1 t S1 if X is an annulus or Möbius band

Show the following:
a) ∀x ∈ X show that the inclusion map X \ {x} ↪→ X induces an isomorphism on π1(X,x0) i� x ∈ ∂X
b) If Y is also a disk, annulus or Möbius Band, respectively, and if f : X → Y is a homeomorphism, show that f
restricts to a homeomorphism ∂X → ∂Y .
c) Show that the Möbius band is not homeomorphic to an annulus

a

(⇒) Assume that X \ {x} ↪→ X induces an isomorphism π1(X \ {x}, x0) ∼= π1(X,x0) and suppose for a contradiction
that x /∈ ∂X. We have three cases:

1. If X is a disk this means that X \ {x} is homotopy equivalent to S1 which contradicts the assumption as the
homotopy equivalent gives 0 = π1(X,x0) ∼= π1(X \ {x}, x0) ∼= π1(S

1) = Z. This is absurd, so x /∈ ∂X cannot be
true is X is a disk.

2. If X is an annulus, then X \x is not homotopy equivalent to S1. To see this, note the following picture (red means
the area was deleted):

·x

'

This shows that X \ {x} has another non-trivial generator of π1(X \ {x}, x0), namely the set of loops that goes
around the circle that is removed. This means that π1(X \{x}, x0) ∼= 〈a, b, c〉 (i.e. each generator corresponds to a
loop around either of the boundary circles or the deletion). On the other handX deformation retracts onto either of
its boundary circles (it is an collar neighborhood of the inner boundary circle) so that π1(X,x0) ∼= π1(S

1, x0) ∼= Z.
Hence x cannot be on the interior of the annulus

3. Now suppose that X is a Möbius strip. Then just as in the annulus case, X \ {x} is homotopic to the removal
of a circle in the interior of the Möbius Strip. This adds another non-trivial generator and as such π1(X,x0) 6∼=
π1(X \ {x}, x0).

Hence x must be in ∂X.
(⇐) Suppose that x ∈ ∂X. If X is a disk, then any loop in X that goes through x is homotopic to a loop that

doesn't go through x (in particular, the trivial loop), so that removal of x will not a�ect the single (trivial) homotopy
class of π1(X). If X is an annulus, then x is either in the outer boundary circle or the inner boundary circle. Since the
annulus deformation retracts onto either of its boundary circles, we know that any loop in X that passes through x is
homotopic to a loop that doesn't go through x (in particular, it is homotopic to a loop in the other boundary circle).
Hence π1(X) ∼= π1(X \ {x}). Finally, suppose X is a Möbius band. Since X can be de�ned as the unique non-trivial
vector bundle over S1 that generates K̃(S1), this simply implies that since x ∈ ∂X, X is homeomorphic to the bundle
Y , where Y retracts the �bers of the base S1 to a smaller copy of the Möbius strip. This has the e�ect of simply using
a loop γ′ in the homotopy class of a loop γ that passes through x such that γ′ doesn't pass through x.

b

Suppose that we have a homeomorphism f : X → Y , where X and Y are either both disks, annuli or Möbius bands.
Suppose that f doesn't restrict to a homeomorphism g : ∂X → ∂Y , where g would be de�ned as f |∂X . Since cut
points are homeomorphism invariants, we can consider X \ {x}, Y \ {f(x)}Then we would have an induced isomorphism
π1(X \ {x}, x0) ∼= π1(Y \ {f(x)}, f(x0)), such that x ∈ ∂X, f(x) /∈ ∂Y . But this contradicts what we showed in part
(a), as we know that these fundamental groups can be isomorphic i� x, f(x) are boundary points.
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Now if X,Y are di�erent, then we have to consider a few cases. If X is a disk, then Y cannot be anything other
than a disk since the π1(Y ) for Y a Möbius Strip or Annulus is di�erent than π1(X). Now if X is an annulus and Y is
a Möbius strip, then if such a homeomorphism existed and didn't restrict to a homeomorphism on the boundary, then
the induced isomorphism π1(X,x0) ∼= π1(Y, f(x0)). Using the fact that cut points are homeomorphism invariants, this
means that we also have π1(X \ {x}, x0) ∼= π1(Y \ {f(x)}, f(x0)) for x ∈ ∂X, f(x) /∈ ∂Y , again contradicting part (a)

c

Suppose for a contradiction that there existed a homeomorphism f : X → Y,X a Möbius band, Y an annulus. This
needs to restrict to a homeomorphism g : ∂X → ∂Y . Since Y retracts onto it's boundary disks via retractions r1, r2,
this implies that f−1 ◦ r1, f−1 ◦ r2 is a retraction of X onto it's boundary circles. We showed in last week's homework
that no such retraction exists, Hatcher �1.1, problem 16(f), so that we have arrived at a contradiction.
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