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§2.1 Problems

1

Problem. What familiar space is the quotient ∆-complex of a 2-simplex [v0, v1, v2] obtained by identifying the edges
[v0, v1] and [v1, v2], preserving the ordering of the vertices?

There are two ways of seeing that this space X is a Möbius Strip. The first way requires the fact that the 2-simplex
[v0, v1, v2] is a compact 2-manifold with corners. It is moreover homeomorphic (but not diffeomorphic) to a compact
2-manifold without corners, so we can can assume without the loss of generality that X is a compact 2-manifold. Since
[v0, v1], [v1, v2] ⊂ [v0, v1, v2] are 1-simplices with opposite orientation, X is going to be non-orientable. Since the only
non-orientable compact 2-manifolds are the Möbius Strip and the Klein Bottle, X must be one of these two manifolds.
Moreover, since we are only quotienting 1 pair of 1-simplices, this means that the non-orientable compact 2-manifold
must be a Möbius strip, and not a Klein bottle.

On the other hand, we can proceed purely topologically. By preserving the orientation of the 1-simplices [v0, v1], [v1, v2],
we must glue [v0, v1] to [v1, v2]. Using the fundamental polygon, we can now show that X is a Möbius Strip:1

b

a′a′

v

v v

−→ ca′ c a′ −→ ca′c a′

⇓

−→

ca′
c

a′←−c c

2

Problem. Show that the ∆-complex obtained from ∆3 by performing the edge identifications [v0, v1] ∼ [v1, v3] and
[v0, v2] ∼ [v2, v3] deformation retracts onto a Klein Bottle

1Since there is a common abuse of notation using an arrow for "gluing" and for orientation, the arrow for b is dropped so there is no
confusion of its meaning of "orientation"
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Using a projection, the quotient X of ∆3 can be represented by the 1-skeleton (with identifications colored),

v0 v3

v1 v2

Now from problem 1, we see that the faces [v0, v3, v1], [v0, v3, v2] are homeomorphic to Möbius Strips that are joined
together along the 1-simplex [v0, v3]. Since ∆3 deformation retracts onto it’s faces, it will retract onto [v0, v3, v1] ∪
[v0, v3, v2]. This leaves us with a fundamental polygon,

v v

vv

By rearranging this polygon, much as we did with the polygon in problem 1, we will get the fundamental polygon of a
Klein Bottle. Explicitly, this is done as follows:

v v

vv

−→

v v

v

v

v v

−→

v v v v

vv

−→

v v

v v

3

Problem. Construct a ∆-complex structure on RPn as a quotient of a ∆-complex structure on Sn having vertices the
two vectors of length 1 along each coordinate axis in Rn+1.

The intuitive idea behind the ∆-complex structure on Sn is that we want to put an n-simplex in each "quadrant" of
Rn+1 and then glue the boundaries accordingly. If {êi}n+1

i=1 are the basis vectors of Rn+1, let v±i = ±êi be the vertices
of this ∆-complex. Now note that for Rn+1 we have 2n "quadrants" as there are 2n+1 combinations of the orientations2
|ê±0 ê

±
1 · · · ê

±
n+1|. Now for each of these combinations, attach an n-simplex. For example if n = 2, then we attach 8

2-simplices, [v+
0 , v

+
1 , v

+
2 ], [v+

0 , v
+
1 , v

−
2 ], [v+

0 , v
−
1 , v

−
2 ], [v+

0 , v
−
1 , v

+
2 ], [v−0 , v

+
1 , v

+
2 ], [v−0 , v

−
1 , v

+
2 ], [v−0 , v

+
1 , v

−
2 ], [v−0 , v

−
1 , v

−
2 ] to their

respective basis vectors in R3. It is clear that this construction of 2n+1 n-simplices will give a space homeomorphic to
Sn. Now to get a ∆-structure on RPn, we simply need to identify opposite simplices. That is, v ∼ −v for n-simplices
v. For example, if n = 2, then under this quotient we have,

[v+
0 , v

+
1 , v

+
2 ] ∼ [v−0 , v

−
1 , v

−
2 ], [v+

0 , v
+
1 , v

−
2 ] ∼ [v−0 , v

−
1 , v

+
2 ], [v+

0 , v
−
1 , v

+
2 ] ∼ [v−0 , v

+
1 , v

−
2 ], [v−0 , v

+
1 , v

+
2 ] ∼ [v+

0 , v
−
1 , v

−
2 ]

Note that −v simply reverses all the basis vectors.

4

Problem. Compute the simplicial homology groups of the triangular parachute obtained from ∆2 by identifying it’s three
vertices to a single point

2I am using | · | to denote orientation of a set of basis vectors, since [·] is already used for simplices
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We have the fundamental polygon,

b

ac

v

v v

X

We have 1 face, 3 edges and 1 vertex so that ∆2(X),∆0(X) ∼= Z,∆1(X) ∼= Z3. Note that ∂2(X) = b + a − c, ∂1(a) =
∂1(b) = ∂1(c) = ∂0(v) = 0. Hence ker ∂2 = 0, ker ∂1 = 0, ker ∂0 = 0. On the other hand, Im ∂2 = Z as the subgroup
〈b+ a− c〉 C 〈a, b, c〉 is free on on generator3. Hence we have,

H∆
2 (X) = ker ∂2

∼= {0}, H∆
1 (X) = ker ∂1/ Im ∂1

∼= Z3 /Z ∼= Z2, H∆
0 (X) = ker ∂0 = Z

Since this is clearly a 2-manifold with corners, H∆
n (X) = {0},∀n ≥ 3.

5

Problem. Compute the simplicial homology groups of the Klein bottle using the ∆-complex structure described at the
beginning of this section

Recall from page 102 of Hatcher that the Klein Bottle K has the following ∆-complex structure:

a a

b

b

c

v v

v v

U

L

We have 2 faces, 3 edges and 1 vertex so that ∆2(K) ∼= Z2,∆1(K) ∼= Z3,∆0(K) ∼= Z. Now note that ∂2(pU + qL) =
p∂2(U) + q∂2(L) = p(a + b − c) + q(a − b + c) = (p + q)a + (p − q)(b − c) so that ker ∂2 = {0} since p + q, p − q =
e ⇒ p = q = e. Note that Im ∂2 = {(p + q)a + (p − q)(b − c)|p, q ∈ Z}. Moreover, ∂1(a) = ∂1(b) = ∂1(c) = ∂0(v) = e
so that ker ∂1 = Z3, ker ∂0 = Z, Im ∂1 = Im ∂0 = {0}. Now note that H∆

1 (K) = ker ∂2/ Im ∂2 so that in the quotient
(p+ q)a+ (p− q)(b− c) = e. In particular, if p = q = 1, we have 2a = e, so that there is non-trivial torsion. Moreover,
if p = 1, q = −1, we find that b − c = e. Hence we have the presentation, H∆

1 (K) ∼= 〈a, b, c|2a = b − c[a, b] = [b, c] =
[a, c] = e〉 ∼= Z×Z2. In sum, the homology groups are:

H∆
n (K) = 0,∀n ≥ 2, H∆

1 (K) = Z×Z2, H
∆
0 (K) = Z

6

Problem. Compute the simplicial homology groups of the ∆-complex obtained from n + 1 2-simplices ∆2
0, · · · ,∆2

n by
identifying all three edges of ∆2

0 to a single edge, and for i > 0 identifying the edges [v0, v1] and [v1, v2] of ∆2
i to a single

edge and the edge [v0, v2] to the edge [v0, v1] of ∆2
i−1.

Let’s start by trying to get some intuition for the space we are working with. Consider the n+ 1 2-simplices, as drawn
below:

e0

e0e0
X0

v

v v
e1

e1e0
X1

v

v v
e2

e2e1
X2

v

v v

· · ·

en

enen−1
Xn

v

v v

3I am using the fact that subgroups of free groups are free
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Now if we glue any two adjacent 2-simplices, Xi, Xi+1, then we get,

Xi

Xi+1

Now let’s compute the homology groups. We have 1 vertex, n+1 edges and n+1 faces so that ∆0(X) ∼= Z,∆1(X),∆2(X) ∼=
Zn+1. Note that ∂0(v) = ∂1(ei) = e so that ker ∂0 = Z, Im ∂1 = e, ker ∂1 = Zn+1 and as such H∆

0 (X) ∼= Z. Now let’s
compute ker ∂2; note that:

∂2Xi =

{
e0 if i = 0

2ei − ei−1 if i = 1
(1)

Hence for an arbitrary 2-subsimplex
∑

i aiXi, we have ∂2 (
∑

i aiXi) = e ⇐⇒ an = 0, since the only term with en

is ∂2Xn. But then if an = 0, ∂2 (
∑n

i=1 aiXi) = ∂2

(∑n−1
i=1 aiXi

)
= e ⇐⇒ an−1 = 0 since the only term containing

en−1 will be Xn−1. Continuing this argument inductively, we see that
∑

i aiXi ∈ ker ∂2 ⇐⇒ ai = 0,∀i. Hence
H∆

2 (X) = ker ∂2 = e. Hence the only thing left to compute is Im ∂2. From (1), it is clear that a basis for Im ∂2 =
{e0} ∪ {2ei − ei−1 : 1 ≤ i ≤ n}. Finally, note that in H∆

1 (X) = ker ∂1/ Im ∂2, we set e0 = e and 2ei − ei−1 = e so that
e0 = 0, 2ei = ei−1. This implies that 2e1 = e0 = 0, 22e2 = e0 = 0, . . . 2kek = e0 = 0 so that all of the edges represent
torsion elements. Summarizing the results, we have:

H∆
0 (X) ∼= Z

H∆
1 (X) ∼= Zn+1 /(Z×2Z× · · · 2n Z) ∼= Z2×Z22 × · · · × Z2n

H∆
n (X) ∼= {e}, n ≥ 2

Note that the second isomorphism in the expression for H∆
1 (X) comes from taking projections on each coordinate.

7

Problem. Find a way of identifying pairs of faces of ∆3 to produce a ∆-complex structure on S3 having a single
3-simplex, and compute the simplicial homology groups of this ∆-complex

Recall that a projection of the 1-skeleton of ∆3 is,

v0 v3

v1 v2

Now consider the relation ∼ defined by σ1 := [v0, v1, v3] ∼ [v0, v2, v3], σ2 := [v1, v2, v3] ∼ [v0, v1, v2]. This equivalence
relation induces relations on 1-simplices:

First Relation: [v2, v3] ∼ [v1, v3], [v0, v1] ∼ [v0, v2]

Second Relation: [v0, v1] ∼ [v1, v3], [v0, v2] ∼ [v2, v3]

Combining the equivalence classes under the two relations gives three classes:

a = {[v0, v1], [v0, v2], [v1, v3], [v2, v3]}, b = {[v0, v3]}, c = {[v1, v2]}

On the other hand, this relation give α = {[v0] ∼ [v3]}, β = {[v1] ∼ [v2]}. Hence we have 2 vertices, 3 edges, 2 faces and
1 3-simplex so ∆0(X) ∼= Z2 ∼= 〈α, β|[α, β] = e〉,∆1(X) ∼= Z3 ∼= 〈a, b, c|[ai, aj ] = e, ∀i, j〉, ∆2(X) ∼= Z2 ∼= 〈σ1, σ2 : [σ1, σ2]〉
and ∆3(X) ∼= Z ∼= 〈A〉. Now let’s validate the claim that X = ∆3/ ∼ is homeomorphic to S3.
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It is not immediately obvious that X ∼= ∆3/∂∆3, since we still have three distinguished edges under the quotient. As
such, we can proceed by considering the definition of S3 ∼= S1 ×D2 ∪D2 × S1, where the two solid tori have boundary
circles that are glued along their boundaries. Under the identification, the projection of the 1-skeleton becomes,

β β

α α

b

c

a =

β β

α α

b

c

a ∪

β β

α α

b

c

a

The second polygon on the right looks very much the fundamental polygon of T2. However, note that the quotient is
orientation-preserving so the lines of a must all have the same orientation under the quotient. This means that the first
polygon on the right (which when untwisted, initially looks like the fundamental polygon of RP2) is forced to have the
orientation of the second polygon. As such, it also represents a torus under the quotient. The "twistedness" in the
above diagram stems from the fact that the two tori in S3 are mirror images of each other, so that relative to the global
frame4 of one torus (i.e. the second polygon on the right), the other torus looks as if it has the opposite orientation.
Hence the above figure represents the fundamental polygon of two solid tori glued along their boundaries.

Now let’s compute the homology of this space. Let A = [ṽ0, ṽ1, ṽ2, ṽ3] be the generator of ∆3(X) (the tilde denotes
image under quotient). Then note that ∂3(X) = 0 and ker ∂3(X) = Z, since

∂3(A) = A|[ṽ1,ṽ2,ṽ3] −A|[ṽ0,ṽ2,ṽ3] +A|[ṽ0,ṽ1,v3] −A|[ṽ0,ṽ1,ṽ2]

= A|[v1,v1,v0] −A|[v0,v1,v0] +A|[v0,v1,v0] −A|[v0,v1,v1]

= σ1 − σ2 + σ2 − σ1

= 0

Hence H∆
3 (X) = Z. Now let’s look at ∂2:

∂2(n1σ1 + n2σ2) = n1 (−a− b+ a) + n2 (c− a+ a)

= −n1σ1|b + n2(σ2|c)
= n2c− n1b (2)

Hence ker ∂2 = 0 so H∆
2 (X) = 0. It is clear that ∂0 = 0 and ker ∂0 = Z2, so we only need Im ∂1, Im ∂2, ker ∂1. Note that

∂1(a) = β − α, ∂1(b) = 0, ∂1(c) = 0. Since a basis for ∆0(X) is {α, β − α}, Im ∂1
∼= Z, ker ∂1

∼= Z2 and H∆
0 (X) ∼= Z.

However from (2), Im ∂2 is generated by {b, c} so H∆
1 (X) ∼= ker ∂1/ Im ∂1

∼= 〈b, c|[b, c]〉/〈b, c|[b, c]〉 = 0. In summary,

H∆
i (X) ∼=

{
Z if i ∈ {0, 3}
0 else

(3)

as expected.

8

Problem. Construct a 3-dimensional ∆-complex X from n tetrahedra T1, . . . , Tn by the following two steps. First
arrange the tetrahedra in a cyclic pattern as in the figure on page 131, so that each Ti shares a common vertical face
with it’s two neighbors Ti−1, Ti+1, subscripts being taken mod n. Then identify the bottom face of Ti with the top face
of Ti+1 for each i. Show the simplicial homology groups of X in dimensions 0, 1, 2, 3 are Z,Zn, 0,Z, respectively. This
is an example of a Lens Space.

4I mean "frame" in the mathematical sense of Cartan, not a physical sense. Recall that the T2 has a globally defined orientation form
inherited from each copy of S1 and moreover that T2 is parallelizable and Ricci-flat, so that it admits a global frame (ê1, ê2). The mirror
image concept comes from strict orientation preservation in the quotient of ∆3. If orientation wasn’t preserved, this could not be S3, since
S3 is orientable.

5
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Let’s start with the tetrahedron T i = [vi0, v
i
1, v

i
2, v

i
3]. Using colors to denote equivalence relations, we can draw the

1-skeleton in a more useful way for this problem:

vi0 vi3

vi1 vi2

∼=

vi3 vi0 vi3

vi1 vi2

Let’s first start with gluing the "left and right faces" of the tetrahedron to it’s neighbors. We define the left face
to be the 2-simplex [vi0, v

i
1, v

i
3] and the right face to be [vi0, v

i
2, v

i
3]. Then our quotient simply sets [vi0, v

i
1, v

i
3] ∼

[vi+1
0 , vi+1

2 , vi+1
3 ], [vi0, v

i
2, v

i
3] ∼ [vi−1

0 , vi−1
1 , vi−1

3 ]. Using the inclusion-exclusion principle, we can compute the number
of vertices, edges and faces at this point.

Vertices
Before quotienting have 4n vertices. From the definition of the quotient, we see that [vi0, v

i
3] ∼ [vj0, v

j
3],∀i, j so that the

2n vertices {vi0, vi3 : 1 ≤ i ≤ n} become 2 vertices giving 2n+ 2 vertices. Now we have vi1 ∼ vi+1
2 , so that the 2n vertices

{vi1, vi+1
2 : 1 ≤ i ≤ n} become n vertices. Hence we have n+ 2 vertices.

Edges
Before quotienting we have 6n edges.Using [vi0, v

i
3] ∼ [vj0, v

j
3],∀i, j, we see that n edges become 1 edge so that we have

5n + 1 edges. Since [vi0, v
i
1] ∼ [vi+1

0 , vi+1
2 ], we have 2n edges becoming n edges. The same holds for the relation

[vi2, v
i
3] ∼ [vi−1

1 , vi−1
3 ] so that we have 3n+ 1 edges.

Faces
Before quotienting we have 4n faces. Geometrically, one can see that we only lose n faces since we are gluing the left
and right faces in a cycle. Hence we have 3n faces.

Now we need to do glue the bottom face of T i to the top face of T i+1. We will define the top face to be [vi1, v
i
2, v

i
3] and

the bottom face to be [vi0, v
i
1, v

i
2] so that our relation becomes [vi0, v

i
1, v

i
2] ∼ [vi+1

1 , vi+1
2 , vi+1

3 ]. Let’s again compute the
effect on vertices, edges and faces.

Vertices
This quotient sets vi+1

3 ∼ vi0. Since [vi0, v
i
3] ∼ [vi+1

0 , vi+1
3 ], this implies that we lose one vertex, giving us n + 1

vertices. Moreover, we now glue vi1 to vi+1
1 , vi2 to vi+1

2 . From before, we know that vi1 ∼ vi+1
2 so that we have

vi+1
1 ∼ vi1 ∼ vi+1

2 ∼ vi2,∀i. Hence we send the n vertices {vi2 : 1 ≤ i ≤ n} ∼ {vi1 : 1 ≤ i ≤ n} to 1 vertex so that we are
left with 2 vertices. Denote these vertices α := v1

0 , β := v1
1

Edges
Since the edge [vi0, v

i
3] has degenerated to a vertex, we lose one edge, giving 3n edges. Moreover, {[vi1, vi2] : 1 ≤ i ≤ n}

has also degenerated to a point so that we only have 1 edge

Faces
All of the faces have degenerated.

As such, we have 1 3-simplex, 0 2-simplices, 1 1-simplex and 2 0-simplices. Since this space is path-connected (as the
quotient of a path-connected space), Proposition 2.7 prescribes that H∆

0 (X) ∼= Z. Now note that ∂1[α, β] = β − α =
v1

1 − v1
0 .

9

Problem. Compute the homology groups of the ∆-complex X obtained from ∆n by identifying all faces of the same
dimension. Thus X has a single k-simplex for each k ≤ n

Claim: Let Xn correspond to the ∆-complex obtained from ∆n. The homology groups are

H∆
i (X) =

{
Z if i = 0 or i = n if n odd
0 otherwise

(4)

6
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We will proceed by induction.

Base Case:
If n = 0, then there is only one vertex and it is clear that H∆

0 (X0) ∼= Z, H∆
i (X0) ∼= {0}, i 6= 0

Induction Step: Consider the space Xn. Assume that (4) holds for k < n. Now since Xn has only 1 k-simplex, for all
k ≤ n, ∆k(Xn) ∼= Z,∀k ≤ n. Now let ak be the generator of ∆k(Xn). From the definition of the boundary operator,
we have

∂ak =

n+1∑
i=1

(−1)iak−1

=

{
ak−1 if n+1 odd
0 if n+1 even

=

{
ak−1 if n even
0 if n odd

Hence if k is even, ker ∂ak = {e} and if k is odd, then ker ∂ak ∼= Z. Now note that since H∆
k (Xn) ∼= ker ∂k/ Im ∂k+1,

if k is even, then ker ∂k is trivial and H∆
k (Xn) ∼= {e}. On the other hand, if k is odd and not equal to n, then k + 1

is even so Im ∂k+1
∼= Z and H∆

k (Xn) ∼= ker ∂k/ Im ∂k+1
∼= Z /Z ∼= {e}. Finally if k = n and n odd, then ∂n+1 = 0, so

H∆
n (Xn) ∼= ker ∂n ∼= Z.

Additional Problems

A1

Problem. Compute the simplicial homology groups of S1 with the ∆-complex structure having n vertices and n edges,
all the edges being oriented in the same direction around the circle

We need to show that,

H∆
i (S1) =

{
Z if i ∈ {0, 1}
0 otherwise

The ∆-complex in question can be represented by something that looks similar to the fundamental polygon of the
genus-g surface:

e1

e2

e3

en−1

en

•v1

•v2•v3

•

•
...

• · · · •vn−1

•vn

By construction we have ∆0(S1) ∼= Zn,∆1(S1) ∼= Zn. Note that ∂0vi = 0,∀i, so ker ∂0
∼= Zn. On the other hand,

∂1ei =

{
vi+1 − vi if i 6= n

v1 − vn if i = n

Hence for an arbitrary element ξ of ∆1(S1), ξ =
∑n

i=1 a
iei, we have,

∂1ξ = ∂1

(
n∑

i=1

aiei

)
=

n∑
i=1

ai∂ei

=

n−1∑
i=1

ai(vi+1 − vi) + an(v1 − vn)

= (an − a1)v1 + (a1 − a2)v2 + · · ·+ (an−1 − an)vn

7
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Now if ξ ∈ ker ∂1, then ai − ai+1 = e if 1 ≤ i ≤ n − 1 and an − a1 = e. This means that a1 = a2 = a3 = · · · = an. If
any of the ai is zero, then this forces aj = 0,∀j so that any non-trivial element in ker ∂1 must contain all of the edges.
Hence any element of ker ∂1 is of the form k

∑n
i=1 ei, k ∈ Z. This implies that

∑n
i=1 ei generates ker ∂1 and as such

H∆
1
∼= ker ∂1

∼= Z.

On the other hand, it is claimed that 〈v1 − v2, v2 − v3, v3 − v4, . . . , vn−1 − vn〉 forms a basis for Im ∂1. This follows
directly from the fact that

∑
i vi − vi+1 = v1 − vn so the last generator from the above computation is redudant. Hence

H∆
0 (X) ∼= ker ∂0/ Im ∂1

∼= Zn /〈vi − vi+1〉 ∼= Z, since the quotient sets vi = vj ,∀i, j ∈ {1, . . . , n}.

A2

Problem. Regarding ∆n as a ∆-complex in the natural way, show that if a subcomplex X ⊂ ∆n has H∆
n−1(X) nonzero,

then X = ∂∆n.

Suppose for a contradiction at such a subcomplex X with H∆
n−1(X) 6= {e}, X 6= ∂∆n existed and let Y = ∂∆n.

Furthermore, let ∂X , ∂Y be the associated boundary operators. Since there are n + 1 elements {ai}ni=0 of ∆n(∆n), for
some strict subset J ⊂ {0, . . . , n} we must have {ai}i∈J ⊂ X. Since each ai is equal to [v0, . . . , v̂k, . . . , vn] for some
k; as such, we can assume without the loss of generality that ai = [v0, . . . , v̂i, . . . , vn]. Let k ∈ {0, . . . , n} \ J so that
[v0, . . . , v̂k, . . . , vn] /∈ X. Such an element exists sinceJ is a strict subset of {0, . . . , n}. Now note that

∂X [v0, . . . , v̂k . . . , vn] =
∑
i<k

(−1)i[v0, . . . , v̂i, . . . , v̂k, . . . , vn] +
∑
i>k

(−1)i−1[v0, . . . , v̂k, . . . , v̂i, . . . , vn]

As such,5 ∂aj ∩ ∂X [v0, . . . , v̂k, . . . , vn] 6= ∅,∀j ∈ J . Now note that ker ∂Y 6= {e}, since ∂Y
(∑n

i=0(−1)iai
)

= 0. This
sum vanishes because the gluing of two n − 1 simplices (in ∆n) along an n − 2 simplex forces pairwise opposite ori-
entations6 on the two glued n − 2 simplices. Since a " As such since [v0, . . . , v̂k, . . . , vn] ∈ Y \ X, we have, for each
aj , j ∈ J , [v0, . . . , v̂j , . . . , v̂k, . . . vn] ∈ ∂Xaj 6= 0. This means that for any ξ =

∑
i∈J n

iai, n
i ∈ Z, we necessarily have∑

i∈J n
i[v0, . . . , v̂i, . . . , v̂k, . . . , vn ∈ ∂ξ.

∴ ∂Xξ 6= {e},∀ξ ∈ ∆n−1(X)
∴ ker ∂X = {e} and H∆

n−1(X) = {e}, a contradiction

5By intersection, I am abusing of notation by treating ∂aj as a set of oriented n − 1 simplices as opposed to formal sum. Effectively, a
non-empty intersection of two boundaries ∂aj , ∂ak implies that ∂ak − ∂aj = ∂(ak − aj) 6= ∅

6This is the "geometric" rationale for the alternating sum in the definiton of the boundary operator
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