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§2.2 Problems

1

Problem. Prove the Brouwer fixed point theorem for maps f : Dn → Dn by applying degree theory to the map Sn → Sn

that sends both the northern and southern hemispheres of Sn to the southern hemisphere via f .

We will proceed by contradiction. Intuitively, the map the sends both the northern and southern hemispheres to the
southern hemisphere somehow deforms the northern hemisphere in Dn−1 while keeping the southern hemisphere and
equator fixed. Suppose Sn ↪→ Rn+1 via the standard definition as the zero locus of the polynomial (

∑
i x

2
i ) − 1. Then

the northern and southern hemispheres are:

N = {(x1, . . . , xn+1) :
∑
i

x2
i − 1 = 0, xn+1 ≥ 0}

S = {(x1, . . . , xn+1) :
∑
i

x2
i − 1 = 0, xn+1 ≤ 0}

Since f : Dn → Dn can be viewed as a map that sends a hemisphere to itself. Since we want everything to map to the
southern hemisphere, we can consider f as a map S → S. Now our strategy can be laid out: Using the antipodal map,
we can first map N to S and then apply f . Since N∩S = {~x ∈ Sn : xn+1 = 0}, continuity implies that we need to ensure
that the points on the southern hemisphere are mapped antipodally in all coordinates except xn+1. Geometrically, this
is to account for the fact that the antipodal map is a reflection. Explicitly, we defined our map g : Sn → S ⊂ Sn as,

g(x1, . . . , xn+1) =

{
f(−x1, . . . ,−xn+1) if xn+1 ≥ 0

f(−x1, . . . ,−xn, xn+1) if xn+1 ≤ 0
(1)

It is clear that limxn+1↓0 g = limxn+1↑0 g so that the g is a continuous extension of f . Moreover g is not surjective
as a map Sn → Sn since points on the northern hemisphere don’t have an inverse. Hence deg g = 0 Now as in the
one-dimensional case, we consider the deformation retraction F : I × Sn → Sn,

F (t, x) =
(1− t)x− tg(x)

‖(1− t)x− tg(x)‖Rn+1

(2)

If f has no fixed points, then g has no fixed points and F (t, x) is well-defined.1 However note that F serves as a
homotopy between 1l and g. But deg 1l = 1 while deg g = 0 so that we have a contradiction.

3

Problem. Let f : Sn → Sn be a map of degree zero. Show that there exist points x, y ∈ Sn such that f(x) = x, f(y) =
−y. Use this to show that if F is a continuous vector field defined on the unit ball Dn in Rn such that F (x) 6= 0,∀x,
then ∃ a point on ∂Dn where F points radially outward and another point on ∂Dn where F points radially inward.

We can effectively use the arguments of Brouwer’s Fixed Point Theorem to deduce that f must have a fixed point
theorem. If f doesn’t have a fixed point then the function

F (t, x) =
tx− (1− t)f(x)

‖tx− (1− t)f(x)‖Rn+1

1For a more thorough argument we could show that the denominator never maps to zero. However, this is proved in Theorem 1.1 and the
proof doesn’t change in high dimensions
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is well-defined, continuous and non-singular. However this implies that f ' 1l even though deg f 6= deg 1l. Hence f must
have a fixed point.

One the other hand, if we define a map

F (t, x) =
tx+ (1− t)f(x)

‖tx+ (1− t)f(x)‖Rn+1

Then if f(x) 6= −x,∀x, this map is well-defined and continuous at t = 1
2 (again, using the arguments of Theorem 1.1).

This gives a homotopy f ' −1l even though this implies that 0 = deg f = deg−1l = (−1)n+1, a contradiction. Hence
there exists a point y such that f(y) = −y.

Define the continuous, unit vector field G : Dn → Sn−1 ⊂ TDn ⊕NDn ∼= Rn by,

G(x) =
F (x)

‖F (x)‖Rn

Note that if G has a pair of inward pointing and outward pointing vectors, then F must have one. On the boundary
∂Dn ∼= Sn−1, we can treat this as a map G̃ : Sn−1 → Sn−1. More precisely, G̃ = G ◦ ι, where ι : Sn−1 ↪→ Dn is the
natural inclusion. Hence G̃∗ = G∗ι∗. But this map factors through Hn(Dn) so G∗ = 0 and we must have G̃∗ = 0. Hence
deg G̃ = 0. The conclusion is immediate from the previous results.

4

Problem. Construct a surjective map Sn of degree zero for each n ≥ 1

The strategy here is to construct a map like the one constructed in problem 1 via a deformation and then send the
image of the deformation make to a sphere. In the case of S1 this is quite trivial — let r : S1 → S1 be the reflection
map that sends the upper arc of S1 (i.e. θ ∈ [0, π)) to [π, 2π). Explicitly, we have:

r(θ) =

{
−θ if θ ∈ [0, π)

θ if θ ∈ [π, 2π)

Now if d is the doubling map θ 7→ 2θ, then the combination d ◦ r : S1 → S1 is surjective since d([π, 2π)) = S1.

Recall from Chapter 0 (page 10) that Sm ∧ Sn = Sm+n where ∧ is the smash product. This is constructed by
(Sn × Sm)/(Sn ∨ Sm) so that we can extend a map f : S1 → S1 to a map g = q ◦ (f × f) ∈ End(S1 ∧ S1) ∼= End(S2)
where q : Sn × Sm → Sn ∧ Sm is the quotient map. Since g is constructed as the composition of surjective maps, g is
surjective. Since S1 ∧ S1 ∼= Σ(S1) ' S(S1) (see page 10), where Σ(S1) is the reduced suspension, the degree of g as a
map S2 → S2 is the same as the degree of f via Proposition 2.33. Hence g is a degree zero, surjective map on S2.

We can proceed by induction since Sm ∼= ∧mi=1S
1. The proof is precisely the same, since S1 ∧X ∼= ΣX for any space X.

6

Problem. Show that every map Sn → Sn can be homotoped to have a fixed point if n > 0

There are two ways to do this. The first is far more geometric, but relies on Cartan’s notion of homogeneous spaces.
The spheres Sn admit a transitive group action by the spin groups Spin(n) that are the universal covers of SO(n). Since
Spin(n) are simply connected and path connected, the action of an element g ∈ Spin(n) is homotopic to the action of
identity 1lSpin(n) ∈ Spin(n). Hence if we pick a point x ∈ Sn and it’s image f(x) ∈ Sn, we can construct a one-parameter
semi-group g : [0, 1]→ Spin(n) such that g(1) · f(x) = x, g(0) · f(x) = 1lSpin(n) · f(x) = f(x). This gives a homotopy to a
map that has a fixed point and if f is smooth, this homotopy is also smooth. Moreover, note that this is not necessarily
a homeomorphism, since we can only define the action as a one-parameter semi-group as opposed to closed subgroup of
Spin(n).

The purely topological way to answer this question is to us a fact stated at the beginning of §2.2:

deg(f) = deg(g) ⇐⇒ f ' g

We can now proceed by induction. The base case has already been proven in example 2.32, where the maps fixed
f(0) = 0. Now suppose that f : Sn → Sn has f(x0) = x0 and deg f = k. The inductive step follows from Proposition
2.33, so that since degSf = deg f and subsquently Sf ' f and as S(Sn) ∼= Sn+1 (via the smash product argument of
earlier), this implies that Sf |Sn = f so Sf(x0) = x0.
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7

Problem. For an invertible linear transformation f : Rn → Rn show that the induced map on Hn(Rn,Rn−{0}) ≈
H̃n−1(Rn−{0}) ≈ Z is 1l or −1l according to whether to determinant of f is positive or negative.

The main fact from linear algebra that I will use here is that linear transformations of positive determinant sends an
ordered, oriented basis to an ordered, oriented basis of the same orientation and ordering. Now that an invertible
linear transformation is a homeomorphism so in particular deg f = ±1. Now let’s consider the induced map f∗ ∈
End(Hn(Rn,Rn−{0})). Without the loss of generality, we can assume that we are dealing with simplical homology.
Each point of a chain σ : ∆n → Rn admits a local frame on each face in ∆n. Under a linear transformation of positive
determinant, the orientation of each of these frames has been preserved (i.e. none of the basis vectors changed sign).
Recall that one can describe a general ∆-simplex in terms of barycentric coordinates (t1, . . . , tn) that effectively describe
how a linear transformation takes the standard n-simplex to ∆. Orientation preservation is equivalent to saying that
the signs of the (t1, . . . tn) were preserved under the linear transformation. This implies that we are not changing the
generator of H∆

n since a continuous deformation from barycentric coordinates (t1, . . . , tn) to (t′1, . . . , t
′
n) that changes

sign in a coordinate ti will have to pass through ti = 0 in which case the n-simplex degenerates to an n − 1-simplex.
Note that application of the quotient map to pass from chain groups to homology groups will not change orientation
since all chains in an equivalence class are related by boundaries and/or barycentric coordinate transformations. Hence
under an orientation-preserving, det f > 0 transformation 1l 7→ 1l (in homology).

On the other hand, applying an orientation-reversing or negative determinant transformation will be equivalent to
negating one of the barycentric coordinates. Hence any chain will be taken to a different equivalence class under f∗ and
since deg f = ±1, this implies that orientation reversing transformations map 1l 7→ −1l in homology.

8

Problem. A polynomial f(z) with complex coefficients, viewed as a map C→ C can always be extended to a continuous
map of one-point compactifications f̂ : S2 → S2. Show that the degree of f̂ equals the degree of f as a polynomial. Show
also that the local degree of f̂ at a root of f is the multiplicity of the root.

First, consider g = f |S1 where S1 ↪→ C. Now note that the winding number of a polynomial is a topological invariant that
is equivalent to it’s (topological) degree2. In this case, the winding number of a degree n polynomial is n, so deg g = n
and subsequently since f is an entire function deg f = n. Now note that degSf = deg f and since S(S1) ∼= S2, we have
a map Sf : S2 → S2 that is equal to the one-point compactification map. Hence deg f = n

Suppose that the polynomial has roots r1, . . . , rk ∈ C and via the fundamental theorem of algebra f(z) =
∏n
i=1(z−ri)αi ,

where αi is the multiplicity. Now let Di be centered at ri. By a homeomorphism we can ensure that Di ∩Dj = ∅,∀i, j.
In each of the punctured disks Di−{ri}, we can construct a closed, but not exact 1-form, dθi. In fact, this 1-form is dual
(via the de Rham pairing) to the homology generator of each H1(Di − {ri}) since (Di − {ri}) ' S1. We want to find
the relative homology groups H̃k(Di, Di − {ri}). Since H̃k(Di) = 0,∀k, the long exact sequence for relative homology
gives H̃2(Di, Di − {ri}) ∼= H̃1(Di − {ri}) ∼= Z. Hence, the local degree is well-defined and can be found using winding
number integral.

Now note that
∫
Di−{ri}

(z−ri)αi
f(z) dθi = 0 since (z−ri)αi

f(z) is holomorphic on Di −{ri}. To compute the winding number we
have (via the argument principle), ∫

Di−{ri}

f ′(z)

f(z)
dθi = 2πiαi

Hence the winding number of f(z) is αi

2The reason for this is because the 1-form dθ is not exact so 1
2π

∫
f(θ)dθ corresponds (via the de Rham pairing) to a non-trivial element

of H1(S1;Z). Since S1 is paracompact, H1(S1;Z) ∼= H1(S1;Z)
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