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Viother Nature

* Nature has four forces
% Familar: Gravity, Electromagnetism (EM)
% Not-so-familiar: Weak, Strong

* General Relativity explains gravity at big scales and can be adapted to
handle the EM, Weak and Strong forces.

% Quantum Mechanics explains EM, weak and strong forces at small
length scales

* Fundamental Problem (F.P.): What is a guantum mechanical explanation
of gravity? Why do black holes have thermodynamic properties?
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1. Nature has four forces, Gravity, Electromagnetism, the Weak Force and the Strong Force. In the modern world, we
have a lot of experience with gravity and electromagnetism and our a high school education ensures that we are
aware of these forces. These forces have been well-studied and we have pretty much uncovered how these forces
work on a large scale (General Relativity) and on small scale (Quantum Mechanics). Moreover in the past eighty years,
we have discovered two other microscopic forces that appear just as fundamental as Gravity and EM — the weak and
strong forces. Without going into details, the weak force represents the radiation one encounters while getting an X-
Ray or CT scan, while the strong (nuclear) force is what keeps the subatomic particles (eA{-}, \gamma) we know and
love together.

2. The weak and strong force are severely limited in their range and generally only play a role in physics at a very
small, internuclear level. However, they do play a role in “big” objects when one considers neutron stars and nuclear
fusion in the sun. However, one is more interested in how EM behaves when put in the framework of GR since EM
effects are pretty common (e.g. Cosmic Microwave Background radiation). On the other hand, one uses quantum
mechanics to study interesting phenomena such as paramagnetism and diamagnetism that cannot be explained
solely with Newton’s Laws. Yet an explanation of gravity on a small length scale, such as in quantum mechanics has
evaded physicists for years. You might ask why would anyone care? Answer: Black Holes.
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mapping of the interval into a space out a Riemann Surface

As the point particle evolves, it traces ' As the string evolves in time
out a path, which is a continuous trl n g S within an n-manifold, it traces

* One solution to the F.P. is to éxtend the point-like object of a field
theory to a string, which should be viewed as a 1-dimensional “object”.

% There are only two 1-dimensional manifolds: I=10,1], S*

* The first case is the open string, ———— , while the second case is the
closed string from the illustrations at the top

* Question: Strings are a simple idea, so shouldn’t this simplify the hefty
equations of Quantum Field Theory and General Relativity?
Answer: Probably, but not not without further geometric implications

3
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COSMIC MICROWAVE

IT’S THE BACKGROUND, LITERALLY _ BACKGROUND RAD.
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Issue: If we embed a string into ]Rl 3 while requiring that the string serves \\

£ -~ as the minimizer of the area functional S : T(R'?) — R then S Wlll not be \*
, l/,z invariant under any smooth action of the group, G = RY3 x SO(1, % e

2 This is actually true for any Riemannian
2 or Lorentzian manifold of dimension n # 10
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Backgrounds

* The change to a string forces us to consider only 10-dimensional
Riemannian/Lorentzian Manifolds — This has huge consequences

* |n order to preserve all known physics, one initially considers the 10-
manifold for the background to be of the form:

M = Rl’g X X6
where Xg 1s a 6-dimensional Kahler Manifold

* Why a Kahler Manifold?

% Automatically satisfies the integrability conditions so that ODE existence
theorems can be used

* Integrabillity is easy: The Newlander-Nirenberg Theorem, Nijenhuis Tensor
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. ' If this definition doesn’t feel
Kah ‘ e r M ar] |fo ‘ d S motivated, you’re not alone!

Definition:
A Complex, Riemannian Manifold (M, g) is said to be Almost Hermitian if

gp(X,Y) =g,(Y,X),Vpe M,VX,Y € TpM(C. An integrable, almost Hermitian
manifold is said to be Kdhler if the 2-form w(X,Y) := g(X, JY) is closed.

J is the Complex Structure which heuristically can be described by the phrase:

“Separates ‘holomorphic’ tangent vectors from ‘antiholomorphic’ tangent vectors”

Sinemain advantagesinat
INtegranie) ancssSymplectc:
SIMIP1YE

el Ie Viannoelasiave areindieysdressiemannian  Somplex
NIOLHETAWOIASHL estr LUregrotpieRtHENdNGgENEOUNGCIENS
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Kahler Manifolds: Geometry

% Let’s consider how such a Kahler manifold ‘looks’ geometrically.

* This is more easily seen in local coordinates

% Locally, we can write the Hermitian metric as g — g,53dz% & dz” (Ein-
stein Summation Convention implied) and the Ké&hler form takes the form

h— Lhepdz® A dz°

* The Hermiticity condition is quite strong; in fact, we can prove that the
Christoffel Symbols for the Levi-Civita Connection are simply,

£ 09,
| - nk _—J

Note that this reduces the number of derivatives of g to be computed
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Kahler Geometry

% Note that this form of the metric separates the holomorphic and anti-
holomorphic parts of the metric, implying (at least locally) that the
connection splits as, V= V"’ + V%% Heuristically, this says that parallel
transport along a loop preserves “type of vector.” In other words,

Hol, = U(n)
* This gives a Ricci tensor of the form, .
Rij — szdzz 0 dzj — —aZiaZj lngdzz 029 dzj

which reduces a computation of the Ricci tensor to a Dirichlet problem
for compact manifold with boundary.

% Given this simple form, one may wonder how to solve simplest
Laplacian problem for this metric, namely Ric, =0

8
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Symplectic Manifolds

* Phase Spaces in physics can be described in terms of the cotangent
bundle of a manifold

* Fundamental Assumption of mechanics: The change in momentum and
the change in position can be measured simultaneously at arbitrary
precision, or in other words (implictly used: Darboux’s Theorem)

dp N\ dg = 0

* The symplectic form is a generalization of this — it is a non-
degenerate, closed, 2-form.

* The Kahler Form is a symplectic form, which means that a Kahler
Manifold is equipped to handle classical mechanics

9
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Calabi-Yau Manifold

* Remember that we had a Dirichlet problem for the Ricci tensor of a
Kahler Manifold?

% It turns out that solving Ric, = 0 is too strong of a condition; instead for
physics, one is interested in solving Tr(Ric,) = 0 [Intrinsic Curvature,
Ricci Scalar]

* However, it turns out that there are topological obstructions to solving
this equation, namely the admission of a non-trivial line bundle makes it
impossible to solve the above equation

10
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Calabi-yYaul IS Brief History

* Historically,

sfn showed
that he co
involving t

’ | ' Q 1 formula
% Chern generaliz sing B

characteristic

* In 1956, Calakt

Ql«’ at we have a
solution for the

ce had stacked

," @ u in 1978 ) _

11

Thursday, March 24, 2011

11
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* We've come tg g | atical reyt of
makes String y feasible:
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Calabi-Yau Examples

The simplest 3-dimensional (complex) Calabi-Yau Manifold is defined by the zero locus,
Z ={|Z1,2,Z5,24,75] € CP*: Z? + Z2 + Z2 + Z2 + Z? = 0}

Yau’s Theorem effectively says that the only line bundle over this space is the canonical bundle

Another common example are the K3 surfaces, which are in general not
algebraic, so we cannot write them as zero |loci In any projective space

Problem: All of the known examples of algebraic Calabi-Yau Manifolds are non-compact.
Since compact Calabi-Yau Manifolds are of interest in physics, one would like to find an
explicit metric on a compact Calabi-Yau manifold — This has not been done yet!

13
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Sasakian Manifolds

% Sasakian Manifolds can be looked at as the “odd-dimensional cousin”
of Calabi-Yau Manifolds

* They have contact and CR structures which complement the
symplectic and complex structures on a Calabi-Yau Manifold

* There is a fundamental relationship between a Sasakian Manifold (M, g)
and it’'s metric cone, (C(M),§),g = dr* +rg

* This is often taken as the definition in physics, albeit without
considering the limit r 1T oo

14
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Contact Structures

The standard example
of a contact form on R? is:
0 = %dz + > . yidx;

The zero set of this 1-form

is depicted below

Thursday, March 24, 2011
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Sasakian Manifold: Definition

Theorem. Suppose (M, g) is a 2n + 1-dimensional Riemannian Manifold

The following are equivalent: Thus a

Sasaki-Einstein Manifold
e N is a Sasakian Manifold is both Sasakian

e Ja global, unitary Killing vector field ¢ such that the Ricci tensor satisfies WRCUCR=I1EIE]g
the following equation

R(X,€)Y = n(Y)X — g(X,Y)¢

where 1 is 1-form dual to & via the tangent-cotangent isomorphism

e The metric cone C(M) is Kahler

Recall that an Einstein Manifold is a manifold whose curvature tensor is

proportional to its metric tensor, Ric,(X,Y) = kg(X,Y)

16
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Sasakian Isometries

* The definition implies that there exists a global, unitary Killing Vector
that is a contact 1-form

* This means that the manifold has a U(1) isometry and admits a smooth,
free and proper, U(1) action.

% One can classify Sasaki-Einstein Manifolds by the quotient of this U(1)
action, as the quotient will be Kahler [Note: 4-dim. Kahler Manifolds
have been completely classified by Shiing-Tung Yau and Gang Tian]

17
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The Reeb Foliation

* The orbits of the flows associated to the Reeb Vector Field are U(1) and
foliate the manifold with 1-dimensional spaces. We consider the
Sasakian Manifold M and the quotient by these orbits, N

% One classifies these foliations into three classes

% Regular Foliation: An orbit is homotopic to S! and the fiber has a
“winding number” of one

% Quasi-Reqgular Foliation: An orbit is also homotopic to Stand the
fiber has a “winding number” of k

* |rregular Foliation: The orbit does not close

Viewpoint Differential Geometry in 1995: Irregular Sasaki-Einstein Manifolds do NOT exist

Thursday, March 24, 2011
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The AdS/CFT Conjecture
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Gauge/Gravity Duality

% Physically, Gauge/Gravity duality is a generalization of AdS/CFT that
generalizes the correspondence from a metric theorem to a topological
theorem

* Mathematically, Gauge/Gravity duality is a series of blow-ups and
blow-downs that give a method for resolving a singularity in a compact,
4-manifold with boundary of General Relativity to a vector bundle over
the boundary. For example:

20
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pP,q
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Physical Implications

% Superconductors

* Inflation
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