Analytic Capacity

Tarun Chitra

Tarun Chitra Analytic Capacity

< A

三日 のへの

Outline

Motivation

- Removable Sets
- Analytic Condition for Removability
- 2 Preliminaries for Modern Results
 - Hausdorff Measure and Hausdorff Measure
 - Rectifiability

3 Modern Results

- Hausdorff Measure and Analytic Capacity
- Garnett's Counter-Example
- Denjoy and Vitushkin Conjectures

Basic Problem Analytic Condition for Removability

Outline

Motivation

Removable Sets

• Analytic Condition for Removability

2 Preliminaries for Modern Results

• Hausdorff Measure and Hausdorff Measure

Rectifiability

3 Modern Results

- Hausdorff Measure and Analytic Capacity
- Garnett's Counter-Example
- Denjoy and Vitushkin Conjectures

Basic Problem Analytic Condition for Removability

Problem

Definition

A set K is said to be *removable* if for whenever $K \subset \Omega \subset \mathbb{C}$, where $\Omega \subset \mathbb{C}$ is open, every function $f : \Omega \setminus K \to \mathbb{C}$ has an analytic extension to all of Ω .

Problem

Can we determine which sets in the complex plane are removable? What geometric and analytic properties about these sets are important? Can we classify a measurement of "how removable" a set is?

Basic Problem Analytic Condition for Removability

Problem

Definition

A set K is said to be *removable* if for whenever $K \subset \Omega \subset \mathbb{C}$, where $\Omega \subset \mathbb{C}$ is open, every function $f : \Omega \setminus K \to \mathbb{C}$ has an analytic extension to all of Ω .

Problem

Can we determine which sets in the complex plane are removable? What geometric and analytic properties about these sets are important? Can we classify a measurement of "how removable" a set is?

Basic Problem Analytic Condition for Removability

Problem

Definition

A set K is said to be *removable* if for whenever $K \subset \Omega \subset \mathbb{C}$, where $\Omega \subset \mathbb{C}$ is open, every function $f : \Omega \setminus K \to \mathbb{C}$ has an analytic extension to all of Ω .

Problem

Can we determine which sets in the complex plane are removable? What geometric and analytic properties about these sets are important? Can we classify a measurement of "how removable" a set is?

Basic Problem Analytic Condition for Removability

Early History

• We are familiar with Riemann's famous theorem on removable singularities from Stein & Shakarchi:

Theorem

(Riemann) Suppose that f is holomorphic in an open set Ω except possibly at a point $z_0 \in \Omega$. If f is bounded on $\Omega - \{z_0\}$ then z_0 is a removable singularity

• French mathematician and politican Paul Painlevé wondered if it was possible to further characterize <u>compact</u> removable sets in C. Lars Ahlfors, in 1942, restated what is contemporarily known as the *Painlevé Problem* in the following succinct form:

Given a compact set $E \subset \mathbb{C}$, when does there exist a non-constant bounded analytic function f(z) on $\mathbb{C} \setminus E$?

Basic Problem Analytic Condition for Removability

Early History

• We are familiar with Riemann's famous theorem on removable singularities from Stein & Shakarchi:

Theorem

(Riemann) Suppose that f is holomorphic in an open set Ω except possibly at a point $z_0 \in \Omega$. If f is bounded on $\Omega - \{z_0\}$ then z_0 is a removable singularity

• French mathematician and politican Paul Painlevé wondered if it was possible to further characterize <u>compact</u> removable sets in C. Lars Ahlfors, in 1942, restated what is contemporarily known as the *Painlevé Problem* in the following succinct form:

Given a compact set $E \subset \mathbb{C}$, when does there exist a non-constant bounded analytic function f(z) on $\mathbb{C} \setminus E$?

Basic Problem Analytic Condition for Removability

Painlevé's Theorem

Theorem

(Painlevé) Assume that for all $\varepsilon > 0$, the compact set $E \subseteq \mathbb{C}$ can be covered by a collection of discs whose radii does not exceed ε . Then the set of bounded analytic functions on $\mathbb{C} \setminus E$ consists only of constants^a

^aNote that the set of bounded analytic functions on a set Ω is denoted $H^{\infty}(\Omega)$, with the notation representing the H^{∞} Hardy Space

Proof.

For each $\varepsilon > 0$, cover E by a collection of discs U_i such that $\sum_i r_i < \varepsilon$ (where r_i is the radius of the disc U_i). Now let $D_{\varepsilon} = \bigcup_i U_i$ and let $\Gamma_{\varepsilon} = \partial D_{\varepsilon}$. Next, setup the following Cauchy Integral

$$f(z) = rac{1}{2\pi i} \int_{\Gamma_{\mathcal{E}}} rac{f(\zeta)}{z-\zeta} d\zeta \quad z \notin \overline{D}_{\mathcal{E}}$$

for some $z \in \mathbb{C} \setminus E$ and $f \in H^{\infty}(\mathbb{C} \setminus E)$ with $f(\infty) = 0$. Then $|f(z)| \leq \frac{\varepsilon \cdot \sup_{\Gamma_{\varepsilon}} (|f|)}{2\pi \cdot d(z, \Gamma_{\varepsilon})}$. As $\varepsilon \searrow 0, |f(z)| = 0.$

Basic Problem Analytic Condition for Removability

Painlevé's Theorem

Theorem

(Painlevé) Assume that for all $\varepsilon > 0$, the compact set $E \subseteq \mathbb{C}$ can be covered by a collection of discs whose radii does not exceed ε . Then the set of bounded analytic functions on $\mathbb{C} \setminus E$ consists only of constants^a

^aNote that the set of bounded analytic functions on a set Ω is denoted $H^{\infty}(\Omega)$, with the notation representing the H^{∞} Hardy Space

Proof.

For each $\varepsilon > 0$, cover E by a collection of discs U_i such that $\sum_i r_i < \varepsilon$ (where r_i is the radius of the disc U_i). Now let $D_{\varepsilon} = \bigcup_i U_i$ and let $\Gamma_{\varepsilon} = \partial D_{\varepsilon}$. Next, setup the following Cauchy Integral

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_{\varepsilon}} \frac{f(\zeta)}{z - \zeta} d\zeta \quad z \notin \overline{D}_{\varepsilon}$$

for some $z \in \mathbb{C} \setminus E$ and $f \in H^{\infty}(\mathbb{C} \setminus E)$ with $f(\infty) = 0$. Then $|f(z)| \leq \frac{\varepsilon \cdot \sup_{\Gamma_{\mathcal{E}}} (|f|)}{2\pi \cdot d(z, \Gamma_{\mathcal{E}})}$. As $\varepsilon \searrow 0$, |f(z)| = 0.

Basic Problem Analytic Condition for Removability

Outline

Removable Sets

• Analytic Condition for Removability

- Preliminaries for Modern Results
 - Hausdorff Measure and Hausdorff Measure
 - Rectifiability

3 Modern Results

- Hausdorff Measure and Analytic Capacity
- Garnett's Counter-Example
- Denjoy and Vitushkin Conjectures

Basic Problem Analytic Condition for Removability

What is Analytic Capacity?

• Ahlfor's came up with the notion of the Analytic Capacity of a set E, $\gamma(E)$ defined by:

$$\gamma(E) = \sup\{|f'(\infty)|: f: \mathbb{C} \setminus E \to \mathbb{C} \text{ is holomorphic}, ||f||_{\infty} \leq 1\}$$

where $f'(\infty)$ is calculated relative to the local coordinate $z = \frac{1}{\zeta}$ on the Riemann Sphere as :

$$f'(\infty) = \lim_{\zeta \to 0} f'(\frac{1}{\zeta}) = \lim_{\zeta \to 0} \frac{f(\frac{1}{\zeta}) - f(\infty)}{\zeta - \frac{1}{\zeta}} = \lim_{z \to \infty} z(f(z) - f(\infty))$$

and $f(\infty) = \lim_{z \to \infty} f(z)$. Note that in general $\lim_{|z| \to \infty} f'(z) \neq f'(\infty)$.

Now suppose we look at the Möbius Transformation

$$g(z) = \frac{f(z) - f(\infty)}{1 - \overline{f(\infty)}f(z)}$$

which is in $H^{\infty}(\mathbb{C}\setminus E)$ as $||f|| \le 1$. Therefore, we need only consider functions with $f(\infty) = 0$ as $g(\infty) = 0$. If not, then $g'(\infty)$ will always tend to $-\infty$ regardless of $f'(\infty)$.

Basic Problem Analytic Condition for Removability

What is Analytic Capacity?

• Ahlfor's came up with the notion of the Analytic Capacity of a set E, $\gamma(E)$ defined by:

$$\gamma(E) = \sup\{|f'(\infty)|: f: \mathbb{C} \setminus E \to \mathbb{C} \text{ is holomorphic}, ||f||_{\infty} \leq 1\}$$

where $f'(\infty)$ is calculated relative to the local coordinate $z = \frac{1}{\zeta}$ on the Riemann Sphere as :

$$f'(\infty) = \lim_{\zeta \to 0} f'(\frac{1}{\zeta}) = \lim_{\zeta \to 0} \frac{f(\frac{1}{\zeta}) - f(\infty)}{\zeta - \frac{1}{\zeta}} = \lim_{z \to \infty} z(f(z) - f(\infty))$$

and $f(\infty) = \lim_{z \to \infty} f(z)$. Note that in general $\lim_{|z| \to \infty} f'(z) \neq f'(\infty)$.

• Now suppose we look at the Möbius Transformation

$$g(z) = \frac{f(z) - f(\infty)}{1 - \overline{f(\infty)}f(z)}$$

which is in $H^{\infty}(\mathbb{C}\setminus E)$ as $||f|| \leq 1$. Therefore, we need only consider functions with $f(\infty) = 0$ as $g(\infty) = 0$. If not, then $g'(\infty)$ will always tend to $-\infty$ regardless of $f'(\infty)$.

Basic Problem Analytic Condition for Removability

Properties of γ

Let's first establish some properties about γ :

- If f(∞) = 0 then γ has an invariance property: γ(aE + b) = |a|γ(E) which comes from the fact that lim zf(az + b) = af'(∞)
- γ is monotone: If $E \subset F$ then $\gamma(E) \leq \gamma(F)$
- An important proposition:

Proposition

Assume that E is connected but not a point. Let g be the conformal map of Ω onto the unit disc satisfying $g(\infty) = 0$, $g'(\infty) > 0$. Then $\gamma(E) = |g'(\infty)|$

Proof.

Basic Problem Analytic Condition for Removability

Properties of γ

Let's first establish some properties about γ :

- If f(∞) = 0 then γ has an invariance property: γ(aE + b) = |a|γ(E) which comes from the fact that lim zf(az + b) = af'(∞)
- γ is monotone: If $E \subset F$ then $\gamma(E) \leq \gamma(F)$
- An important proposition:

Proposition

Assume that E is connected but not a point. Let g be the conformal map of Ω onto the unit disc satisfying $g(\infty) = 0$, $g'(\infty) > 0$. Then $\gamma(E) = |g'(\infty)|$

Proof.

Basic Problem Analytic Condition for Removability

Properties of γ

Let's first establish some properties about γ :

- If f(∞) = 0 then γ has an invariance property: γ(aE + b) = |a|γ(E) which comes from the fact that lim zf(az + b) = af'(∞)
- γ is monotone: If $E \subset F$ then $\gamma(E) \leq \gamma(F)$
- An important proposition:

Proposition

Assume that E is connected but not a point. Let g be the conformal map of Ω onto the unit disc satisfying $g(\infty) = 0$, $g'(\infty) > 0$. Then $\gamma(E) = |g'(\infty)|$

Proof.

Basic Problem Analytic Condition for Removability

Properties of γ

Let's first establish some properties about γ :

- If f(∞) = 0 then γ has an invariance property: γ(aE + b) = |a|γ(E) which comes from the fact that lim zf(az + b) = af'(∞)
- γ is monotone: If $E \subset F$ then $\gamma(E) \leq \gamma(F)$
- An important proposition:

Proposition

Assume that E is connected but not a point. Let g be the conformal map of Ω onto the unit disc satisfying $g(\infty) = 0$, $g'(\infty) > 0$. Then $\gamma(E) = |g'(\infty)|$

Proof.

Basic Problem Analytic Condition for Removability

315

< 🗇 🕨

• = • •

Example 1: $I \subset \mathbb{R}$

Example

Let E = [-2,2]. Let $g(z) = z + \frac{1}{z}$; note that g is a conformal map that takes the unit circle to E^{-a} . Now note that $\gamma(E) = g^{-1'}(\infty)$ so that the inverse function theorem gives:

$$\gamma(E) \quad = \quad \frac{1}{g'(g(\infty))} = \frac{1}{1 - \frac{1}{\infty}} = 1$$

Now let $I = [a, b] \subset \mathbb{R}$ so that

$$\gamma(I) = \left(\frac{b-a}{4}[-2,2] + \frac{a+b}{2}\right) = \frac{b-a}{4}\gamma([-2,2]) = \frac{1}{4}m(I)$$

Note that with some further effort it can be shown that for all $E \subset \mathscr{B}(\mathbb{R})$ that $\gamma(E) = \frac{1}{4}m(E)$.

^asee Stein & Shakarchi, Ch. 8.1, Example 5

Basic Problem Analytic Condition for Removability

ヘロト (同) (ヨト (ヨト)目目 うので

Example 2: A disc

Example

A disc $D(z_0, r)$ for $z_0 \in \mathbb{C}$, r > 0Let $D = \{z : |z - z_0| \le r\}$ so that $E^c = \overline{\mathbb{C}} \setminus E = \{z : |z - z_0| \ge r\}$. Then we can map $E^C \mapsto \mathbb{D}$ using the the conformal map $z \mapsto \frac{r}{z - z_0}$. If $g(z) = \frac{r}{z - z_0}$ then using the local coordinate $z = \frac{1}{\xi}$, we have $g(\frac{1}{\xi}) = \frac{r}{\frac{1}{\xi} - z_0} = \frac{r\xi}{1 - z_0\xi}$ and differentiating yields $g'(\frac{1}{\xi}) = \frac{r}{1 - z_0\xi} - \frac{r\xi}{(1 - z_0\xi)^2}$

so that if we send $\xi \to 0$, we have $g'(\infty) = \underset{\xi \downarrow 0}{\lim} g'(\frac{1}{\xi}) = r.$

Basic Problem Analytic Condition for Removability

《曰》 《圖》 《문》 《문》 문법

How is Analytic Capacity Related to Removability?

Theorem

Let $E \subset \mathbb{C}$ be a compact set. Then the following assertions are equivalent: (i) $\gamma(E) = 0$ (ii) Every bounded analytic function $f : \mathbb{C} \setminus E \to \mathbb{C}$ is constant (iii) E is removable for bounded analytic functions

Proof. It is clear that $(ii) \Rightarrow (i)$. Now suppose for a contradiction that there exists a non-constant bounded analytic function $f : \mathbb{C} \setminus E \to \mathbb{C}$ with $f(\infty) = 0$ and $f(z_0) \neq 0$ for $z_0 \in \mathbb{C} \setminus E$. Now suppose we define

$$g(z) = \begin{cases} \frac{f(z) - f(z_0)}{z - z_0} & \text{if } z \neq z_0 \text{ and } z \in \mathbb{C} \setminus E\\ f'(z_0) & \text{if } z = z_0 \end{cases}$$

Note that $g \in H^{\infty}(\mathbb{C} \setminus E)$ and that $g'(\infty) = f(z_0) \neq 0$. Therefore $\gamma(E) > 0$ and $\neg(ii) \Rightarrow \neg(i)$. The implication $(iii) \Rightarrow (ii)$ follows from Liouville's theorem.

Basic Problem Analytic Condition for Removability

How is Analytic Capacity Related to Removability?

Theorem

Let $E \subset \mathbb{C}$ be a compact set. Then the following assertions are equivalent: (i) $\gamma(E) = 0$ (ii) Every bounded analytic function $f : \mathbb{C} \setminus E \to \mathbb{C}$ is constant (iii) E is removable for bounded analytic functions

Proof. It is clear that $(ii) \Rightarrow (i)$. Now suppose for a contradiction that there exists a non-constant bounded analytic function $f : \mathbb{C} \setminus E \to \mathbb{C}$ with $f(\infty) = 0$ and $f(z_0) \neq 0$ for $z_0 \in \mathbb{C} \setminus E$. Now suppose we define

$$g(z) = \begin{cases} \frac{f(z) - f(z_0)}{z - z_0} & \text{if } z \neq z_0 \text{ and } z \in \mathbb{C} \setminus E\\ f'(z_0) & \text{if } z = z_0 \end{cases}$$

Note that $g \in H^{\infty}(\mathbb{C} \setminus E)$ and that $g'(\infty) = f(z_0) \neq 0$. Therefore $\gamma(E) > 0$ and $\neg(ii) \Rightarrow \neg(i)$. The implication (*iii*) \Rightarrow (*ii*) follows from Liouville's theorem.

Basic Problem Analytic Condition for Removability

▲冊▶ ▲目▶ ▲目▶ 目目 ののの

Proof of Theorem 2 (Continued)

Now suppose that E satisfies (*ii*). Then it is claimed that E must be totally disconnected.

• Suppose that *E* is not totally disconnected; then the Riemann Mapping theorem yields a non-constant, bounded analytic function $f : \mathbb{C} \setminus E_0 \to \mathbb{D}$ for some $E_0 \subseteq E$.

Now let $E \subset U$ for some open set U, f be a bounded analytic function on $U \setminus E$ and fix $z_0 \in U \setminus E$. As E is totally disconnected, there are two curves Γ_1 and Γ_2 such that z_0 is in the domain bounded by Γ_1 and not in the domain bounded by Γ_2 . Using the Cauchy Integral Formula we can show that $\int_E dz \frac{f(z)}{z-z_0} = \left(\int_{\Gamma_1} dz + \int_{\Gamma_2} dz\right) \frac{f(z)}{z-z_0}$ is an analytic extension of f to all of $U \blacksquare$

Hausdorff Measure and Hausdorff Measure Rectifiability

Outline

Motivation

- Removable Sets
- Analytic Condition for Removability

Preliminaries for Modern Results Hausdorff Measure and Hausdorff Measure

Rectifiability

3 Modern Results

- Hausdorff Measure and Analytic Capacity
- Garnett's Counter-Example
- Denjoy and Vitushkin Conjectures

Hausdorff Measure and Hausdorff Measure Rectifiability

Hausdorff Measure

Let $E \subset \mathbb{R}^n$, $\mathscr{X}(E)$ be a collection of countable covers in which each disc in the cover has a bounded diameter¹ and set s > 0. For $\delta > 0$, define:

$$H^{s}_{\delta}(E) = \inf_{\{U_{i}|i \in I\} \in \mathscr{X}(E)} \left\{ \sum_{i} (\operatorname{diam} U_{i})^{s} : E \subset \bigcup_{i} U_{i} \right\}$$

Now note that $H^s_{\delta}(E)$ is monotone decreasing in δ ; for when $\delta \searrow 0$, there are more covers in $\mathscr{X}(E)$. Therefore the limit as $\delta \searrow 0$ exists.

Definition

The *s*-dimensional Hausdorff Measure, $H^{s}(E)$ for $E \subset \mathbb{C}$ by:

$$H^{s}(E) = \lim_{\delta \searrow 0} H^{s}_{\delta}(E)$$
$$= \sup_{\delta > 0} H^{s}_{\delta}(E)$$

¹In other words, $\mathscr{X}(E) = \{ \bigcup_i U_i : E \subset \bigcup_i U_i, U_i \subset \mathbb{R}^n, diam(U_i) \leq \delta \}$, where $diam(U_i) = \sup U_i - \inf U_i$

Hausdorff Measure and Hausdorff Measure Rectifiability

Properties of Hausdorff Measure

- H^s is a regular Borel measure; that is, H^s can measure all countable unions and intersections of the open and closed sets in \mathbb{R}^n and H^s is both inner regular and outer regular.
- H^s is <u>not</u> a Radon measure (it is not locally finite if s < n; this is important in Brownian Motion)
- Relationship between H^1 and m^1 (Lebesgue measure on \mathbb{R}):
 - Let $E \subset \mathbb{R}^n$ then $H^n(E) = \frac{\pi^{n/2}}{2^n \Gamma(\frac{d}{2}+1)} m^n(E)$ where m^n is the Lebesgue measure on \mathbb{R}^n .
 - $H^1(E) = L^1(E)$
 - $H^n(B(x,r)) = (2r)^n$ for $x \in \mathbb{R}^n$ and $r \in (0,\infty)$
 - The proof of this fact is rather complicated and relies on on the isodiametric inequality: $m^n(A) \leq 2^{-n}\alpha(n)\operatorname{diam}(A)^n$ for $A \subset \mathbb{R}^n$

Hausdorff Measure and Hausdorff Measure Rectifiability

Hausdorff Dimension

Definition

The Hausdorff Dimension of a set $E \subset \mathbb{R}^n$, dim_H E, is defined by:

$$\dim_H E = \sup_s \{s > 0 : H^s(E) = +\infty\}$$
$$= \inf_t \{t > 0 : H^t = 0\}$$

Note that $\dim_H E$ need not be an integer (unlike the *n*-dimensional Lebesgue Measure).

Hausdorff Measure and Hausdorff Measure Rectifiability

Outline

Motivation

- Removable Sets
- Analytic Condition for Removability

Preliminaries for Modern Results

- Hausdorff Measure and Hausdorff Measure
- Rectifiability

3 Modern Results

- Hausdorff Measure and Analytic Capacity
- Garnett's Counter-Example
- Denjoy and Vitushkin Conjectures

Hausdorff Measure and Hausdorff Measure Rectifiability

▲冊▶ ▲目▶ ▲目▶ 目目 ののの

Curves

Definition

A curve $\Gamma \in \mathbb{C}$ is a set of the form $\Gamma = \phi([a, b])$ and $\phi : [a, b] \to \mathbb{C}$ is continuous. If ϕ is injective, we say that Γ is a *Jordan curve* and if ϕ is Lipschitz^a then we say ϕ is a *Lipschitz curve*. Finally, we define the length of Γ , $I(\Gamma)$ by:

$$I(\Gamma) = \sup \sum_{i=1}^n |\phi(t_i) - \phi(t_{i-1})|$$

If a curve has $I(\Gamma) < +\infty$, then Γ is said to be *rectifiable*

^aA map $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$ is a Lipschitz map if there exists K > 0 such that $|f(x) - f(y)| \le K|x - y|$

Hausdorff Measure and Hausdorff Measure Rectifiability

Rectifiability

Definition

A set $E \subset \mathbb{C}$ is said to be *1-rectifiable* if there exist Lipschitz maps $f_j : \mathbb{R} \to \mathbb{C}$ such that $H^1(E \setminus \bigcup_j f_j(\mathbb{R})) = 0$. Less formally, this says that E can be covered by a countable union of Lipschitz curves (up to a set of zero 1-dimensional Hausdorff measure). A set $F \subset \mathbb{C}$ is said to be *purely 1-unrecifiable* if $H^1(E \cap \Gamma) = 0$ for all rectifiable curves $\Gamma \subset \mathbb{C}$.

Hausdorff Measure and Hausdorff Measure Rectifiability

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Frostman's Lemma

Finally, an important result in geometric measure theory that is related to rectifiability and is crucial to demonstrating the relationship between $\dim_H E$ and $\gamma(E)$ is Frostman's Lemma (1935):

Lemma

(Frostman) Let A be a Borel set in \mathbb{R}^n . Then $H^s(A) > 0$ if and only if there exists a compactly supported (unsigned) Radon measure μ such that spt $\mu \subset A$, $0 < \mu(\mathbb{R}^n) < \infty$ and $\mu(B(x,r)) \le r^s$ for all $x \in \mathbb{R}^n$ and r > 0.

Outline:

- (\Leftarrow) falls directly from the definition of H^s
- (⇒) comes from a construction of a sequence of monotonically-drecreasing Radon measures that depend on mⁿ(Q) for n = [s] (giving an upper bound for H^s as s need not be in Z whereas n must be in Z)

Hausdorff Measure and Hausdorff Measure Rectifiability

◆□▶ ◆帰▶ ◆三▶ ◆三▶ 三三 のへの

Sketch Proof of Frostman's Lemma

(Very) Sketch(y) Proof. (\Rightarrow) Let $H^{s}(A) = b > 0$. Then for some collection of cubes $\{Q_i\}_{i \in I}$ that cover A we have:

$$\sum_{i} d(Q_{i})^{s} \geq b$$

Now let $m \in \mathbb{N}$ and let \mathscr{D}_m be the family of dyadic cubes of \mathbb{R}^n with side-length 2^{-m} and define a measure μ_m^m on \mathbb{R}^n such that for all $Q \in \mathscr{D}_m$ we have:

$$\mu_{\boldsymbol{m}}^{\boldsymbol{m}}|_{\boldsymbol{Q}} = 2^{-\boldsymbol{ms}} \boldsymbol{m}^{\boldsymbol{n}}(\boldsymbol{Q})^{-1} \text{ if } \boldsymbol{B} \cap \boldsymbol{Q} \neq \emptyset$$

$$\mu_{\boldsymbol{m}}^{\boldsymbol{m}}|_{\boldsymbol{Q}} = 0 \qquad \text{ if } \boldsymbol{B} \cap \boldsymbol{Q} = \emptyset$$

Let $\mu^m = \mu^m_{m-k_0}$ for k_0 such that $B \subset Q$ for $Q \in \mathscr{D}_{m-k_0}$. Then we have $\mu^m(Q) = 2^{-(m-k_0)s}$ (i.e. there is an ascending chain condition on the set of μ^m_m) and subsequently:

$$\mu^{\boldsymbol{m}}(\mathbb{R}^{\boldsymbol{n}}) = \sum_{i=1}^{k} \mu^{\boldsymbol{m}}(Q_i) = n^{-\boldsymbol{s}/2} \sum_{i=1}^{k} \operatorname{diam}(Q_i)^{\boldsymbol{s}} \ge n^{-\boldsymbol{s}/2} b$$

Let $v^{\boldsymbol{m}} = \mu^{\boldsymbol{m}}(\mathbb{R}^n)^{-1}\mu^{\boldsymbol{m}}$. Then it can be shown that $v(B(\mathbf{x},r)) \leq v(U) \leq 2^{n+2s}b^{-1}n^{s/2}r^s$. (\Leftarrow) Let $\{U_i\}_{i \in I}$ be a countable collection of balls that cover of A with diam $U_i \leq \delta$ and let $\mu(A) = K$. Then:

$$\mathcal{K} = \mu(\mathcal{A}) = \mu(\bigcup_{i \in \mathcal{I}} U_i) \le \sum_{i \in \mathcal{I}} \mu(U_i) \le \sum_{i \in \mathcal{I}} \delta^s \le H^s_{\delta'}$$

 $\text{for } \delta' > \delta. \text{ Therefore } H^{\boldsymbol{s}}(A) = \lim_{\delta' \searrow \boldsymbol{0}} H^{\boldsymbol{s}}_{\delta'} = \mu(A) = K > \boldsymbol{0}.$

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Outline

Motivation

- Removable Sets
- Analytic Condition for Removability
- Preliminaries for Modern Results
 Hausdorff Measure and Hausdorff Measure
 Rectifiability

3 Modern Results

- Hausdorff Measure and Analytic Capacity
- Garnett's Counter-Example
- Denjoy and Vitushkin Conjectures

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

・ 同 ト ・ 三 ト ・

Relationship between Hausdorff Measure and γ

Theorem

Let $E \subset \mathbb{C}$. (1) If $H^1(E) = 0$, then $\gamma(E) = 0$ (2) If dim_H E > 1, then $\gamma(E) > 0$

Outline:

- For the first part, we simply need to cover *E* with a cover made up of arbitrarily small disks. Then the Cauchy Integral Theorem will force *f*(*z*) to go to zero
- For the second part, we will use Frostman's lemma to guarantee the existence of a non-constant bounded analytic function on E with |f'(∞)| > 0.

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Proof of Theorem 3

Proof.

(Sketch) (1) Cover E with a countable cover $\{U_i\}_{i \in I}$. As $H^1(E) = 0$, E can be covered by discs $U_i \subset \mathbb{C}$ such that $\sum_i \operatorname{diam}(U_i) < \varepsilon$ for any $\varepsilon > 0$. This means that a circle of diameter ε surrounds E so that we can surround E by a finite collection of C^1 curves Γ_j (i.e. finite subcover) such that $\sum_j l(\Gamma_j) < 2\pi\varepsilon$. Now, choose some z outside of the domain D bounded by the Γ_j , so that the Cauchy Integral Theorem yields

$$f(z) = \frac{1}{2\pi i} \sum_{j} \int_{\Gamma_{j}} \frac{f(\xi)}{\xi - z} d\xi$$

Subsequently we can bound $|f'(\infty)| \leq \lim_{z \neq \infty} \frac{1}{2\pi} \left| \sum_{j} \int_{\Gamma_j} \frac{zf(\xi)}{\xi - z} d\xi \right| \leq \lim_{z \neq \infty} \varepsilon \sup_{\xi \in \Gamma_j} f(\xi) \to 0 \text{ as } \varepsilon \downarrow 0 \text{ so } (1) \text{ is proved.}$

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

• □ ▶ • • □ ▶ • • □ ▶ •

Proof of Theorem 3 (Continued)

Proof.

(2) Since dim_H E > 1, $H^1(E) > 0$ so that Frostman's Lemma gives a (positive) measure μ that satisfies the previous conditions. Let $f = \frac{1}{2} * \mu = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{1}{z-z'} \mu(z')$; note that f is holomorphic away from E as μ is supported on E. It turns out that |f(z)| is bounded as we can approximate the integral as

$$|f| \leq rac{1}{2\pi} \int_{|\xi-z| \geq 1} d\mu(\xi) + \sum_{j} rac{1}{2\pi} \int_{2^{-j-1} < |\xi-z| \leq 2^{-j}} rac{1}{|z-\xi|} d\mu(\xi)$$

Note that the bound above is due to the local finiteness of μ . Subsequently note that we have $|f'(\infty)| = \lim_{z \to \infty} \frac{1}{2\pi} \int_{\mathbb{C}} \left| \frac{z}{z-z'} \right| \mu(z') = \frac{\mu(\mathbb{C})}{2\pi} > 0$, which proves (2).

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Outline

Motivation

- Removable Sets
- Analytic Condition for Removability

2 Preliminaries for Modern Results

- Hausdorff Measure and Hausdorff Measure
- Rectifiability

3 Modern Results

• Hausdorff Measure and Analytic Capacity

• Garnett's Counter-Example

• Denjoy and Vitushkin Conjectures

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

Garnett's Counter-Example

- From Theorem 3, one is tempted to conjecture that $H^1(E) = 0 \iff \gamma(E) = 0$. However in 1969, John Garnett constructed an example of a set E such that $H^1(E) > 0$ but $\gamma(E) = 0$ so that $\gamma(E) = 0 \Rightarrow H^1(E) = 0$.
- The example he used was the "four-corners" Cantor Set which can be define as follows: Let $E_0 = [0,1] \times i[0,1] \subset \mathbb{C}$, the unit square in the first quadrant of the plane. Then let E_1 be the set of four squares of side length $\frac{1}{4}$ that reside in the four corners of E_0 . Similarly, let E_n be the union of 4^n squares located in the four corners of the 4^{n-1} squares of E_{n-1} , with each square in E_n have side length 4^{-n} . Finally, let $E = \cap E_n$ to yield the four-corners Cantor set. In order to simplify notation, label each square in E_n by Q_n^j (for $j = 1...4^n$) so that each $Q_n^j \subset Q_{n-1}^k$ for some k.

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Garnett's Counter-Example

- From Theorem 3, one is tempted to conjecture that $H^1(E) = 0 \iff \gamma(E) = 0$. However in 1969, John Garnett constructed an example of a set E such that $H^1(E) > 0$ but $\gamma(E) = 0$ so that $\gamma(E) = 0 \Rightarrow H^1(E) = 0$.
- The example he used was the "four-corners" Cantor Set which can be define as follows: Let $E_0 = [0,1] \times i[0,1] \subset \mathbb{C}$, the unit square in the first quadrant of the plane. Then let E_1 be the set of four squares of side length $\frac{1}{4}$ that reside in the four corners of E_0 . Similarly, let E_n be the union of 4^n squares located in the four corners of the 4^{n-1} squares of E_{n-1} , with each square in E_n have side length 4^{-n} . Finally, let $E = \cap E_n$ to yield the four-corners Cantor set. In order to simplify notation, label each square in E_n by Q_n^j (for $j = 1...4^n$) so that each $Q_n^j \subset Q_{n-1}^k$ for some k.

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Garnett's Counter-Example Picture of E_0, E_1, E_2

• Here's a picture of E_0, E_1 and E_2 (from Analytic Capacity and Measure by Pajot):

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Garnett's Counter-Example Proof that $H^1(E) \neq 0$

Proof.

Since each Q_n^j is a square, diam $(Q_n^j) = 4^{-n}\sqrt{2}$. Now fix $\delta > 0$ so that if $4^{-n} < \delta$ then:

$$H^1_{\delta}(E) \leq \sum_{j=1}^{4^n} \operatorname{diam}(Q^j_n) = \sqrt{2}$$

Therefore $H^1(E) = \lim_{\delta \searrow 0} H^1_{\delta}(E) \le \sqrt{2}$ so $H^1(E) < \infty$. In fact we can show that $H^1(E) = \frac{1}{\sqrt{2}}$:

$$H^{1}(E) \leq \sum_{n=1}^{\infty} 4^{-n} \sqrt{2} = \sum_{n=1}^{\infty} \frac{\sqrt{2}}{2^{2n}} = \frac{\sqrt{2}}{2} \sum_{n=1}^{\infty} \frac{1}{2^{2n-1}} = \frac{1}{\sqrt{2}}$$

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

・ロト ・同ト ・ヨト ・ヨト ・のへつ

Garnett's Counter-Example Preliminaries to show that $\gamma(E) = 0$

- Let E_{n,j} = E ∩ Q^j_n (i.e. so that the intersection contains the infinitesmal portion of Q^j_n that is in E).
- Since $E_{n,j}$ is geometrically similar to E, $\gamma(E_{n,j}) = 4^{-n}\gamma(E)$.
- Now let f be such that $||f||_{\infty} \le 1$ and $f : \mathbb{C} \setminus E \to \infty$ is holomorphic and $f(\infty) = 0$; suppose that $\gamma(E) > 0$ so that $a = f'(\infty) \in \mathbb{R}^+$. For $z \in \mathbb{C} \setminus E$, let $\Gamma_{n,j}$ be a cycle with winding number one (if possible, let $\Gamma_{n,j}$ be a circle) about $E_{n,j}$ (while having winding number 0 about $E \setminus E_{n,j}$ and about z) and define $f_{n,j}(z)$ as the following Cauchy Integral:

$$f_{n,j}(z) = -\frac{1}{2\pi i} \int_{\Gamma_{n,j}} \frac{f(w)}{w-z} dw$$

We need the following lemmas to show that $\gamma(E) = 0$. Proofs are omitted as they are generally simple estimates and/or manipulations of the Cauchy Integral

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Garnett's Counter-Example Necessary Lemmas

Lemma

(a) $\sum_{j=1}^{4^n} f_{n,j} = f$ (b) There is a constant M such that $f_{n,j} : \mathbb{C} \setminus E_{n,j} \to \mathbb{C}$ is holomorphic, $||f_{n,j}||_{\infty} \leq M$ and $f_{n,j}(\infty) = 0$ (c) $|f'_{n,j}(\infty)| \leq 4^{-n}M\gamma(E)$ Note that the smallest such constant is $M = 1 + \frac{6}{\pi}$.

emma

For any $\varepsilon > 0$ and M > 0, there exists $\delta > 0$ such that for any f with $f : \mathbb{C} \setminus K \to \mathbb{C}$ (holomorphic), $||f||_{\infty} \leq M$, $f(\infty) = 0$ and $|f'(\infty)| \geq \varepsilon$ we have:

$$\sup_{n,j} 4^n |f'_{n,j}(\infty)| \ge (1+\delta)|f'(\infty)|$$

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Garnett's Counter-Example Necessary Lemmas

Lemma

(a)
$$\sum_{j=1}^{4^n} f_{n,j} = f$$

(b) There is a constant M such that $f_{n,j} : \mathbb{C} \setminus E_{n,j} \to \mathbb{C}$ is holomorphic,
 $||f_{n,j}||_{\infty} \leq M$ and $f_{n,j}(\infty) = 0$
(c) $|f'_{n,j}(\infty)| \leq 4^{-n}M\gamma(E)$
Note that the smallest such constant is $M = 1 + \frac{6}{\pi}$.

Lemma

For any $\varepsilon > 0$ and M > 0, there exists $\delta > 0$ such that for any f with $f : \mathbb{C} \setminus K \to \mathbb{C}$ (holomorphic), $||f||_{\infty} \leq M$, $f(\infty) = 0$ and $|f'(\infty)| \geq \varepsilon$ we have:

$$\sup_{n,j} 4^n |f_{n,j}'(\infty)| \ge (1+\delta)|f'(\infty)|$$

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

(日) (四) (日) (日) (日)

Garnett's Counter-Example Proof that $\gamma(E) = 0$

Proof.

Let *E* be the four-corners Cantor set and let *f* be such that $f : \mathbb{C} \setminus E \to \mathbb{C}$ (holomorphic), $||f||_{\infty} \leq M$, $f(\infty) = 0$ and $a = |f'(\infty)| > 0$ so that by assumption $\gamma(E) > 0$. Choose n_1 and j_1 such that by applying Lemma 5 (Using $\varepsilon = a$ and *M* as in Lemma 4) we have:

$$|f_{n_1,j_1}'(\infty)| \ge a(1+\delta)4^{-n_1}$$

Since E_{n_1,j_1} is geometrically similar to E we can apply Lemma 5 to f_{n_1,j_1} and choose some (n_2,j_2) such that $|f'_{n_2,j_2}(\infty)| \ge 4^{n_1} |f'_{n_1,j_1}(\infty)| (1+\delta) 4^{-n_2} \ge a(1+\delta)^2 4^{-n_2}$. Continuting in this manner, we obtain a sequence (n_k,j_k) with $|f'_{n_k,j_k}(\infty)| \ge a(1+\delta)^k 4^{-n_k}$; however, this contradicts Lemma 4c, yielding the reverse inequality. Therefore $f'_{n_k,j_k} \to 0$ and subsequently $f' \to 0$ so $\gamma(E) = 0$.

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Outline

Motivation

- Removable Sets
- Analytic Condition for Removability

2 Preliminaries for Modern Results

- Hausdorff Measure and Hausdorff Measure
- Rectifiability

3 Modern Results

- Hausdorff Measure and Analytic Capacity
- Garnett's Counter-Example
- Denjoy and Vitushkin Conjectures

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Denjoy's Conjecture History and Introduction

In 1909 Arnaud Denjoy made the following conjecture (and provided an incorrect proof within a year)

Conjecture

(Denjoy) Let $E\subset\mathbb{C}$ be a subset of a rectifiable curve $\Gamma.$ Then $\gamma(E)=0$ if and only if $H^1(E)=0$

- Surprisingly, this conjective is rather difficult to prove; Chronologically we have the following:
 - $\bullet\,$ In 1950, L. Ahlfors and A. Buerling showed that the Denjoy conjecture holds if Γ is a straight line
 - In 1962, L. D. Ivanov showed that the Denjoy conjecture is valid if $\Gamma \in C^{1+\varepsilon}$
 - In 1972, A. M. Davie proved that the Denjoy conjecture is valid if $\Gamma \in C^1$
 - Finally in 1977, A. P. Calderón showed that the Cauchy Integral operator²(for C¹ curves) is bounded on L^p (1

 $^{2}\mathcal{L}_{op} = \int_{\gamma} d\mu(\xi) \frac{1}{z-\xi}$

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Denjoy's Conjecture History and Introduction

In 1909 Arnaud Denjoy made the following conjecture (and provided an incorrect proof within a year)

Conjecture

(Denjoy) Let $E\subset\mathbb{C}$ be a subset of a rectifiable curve $\Gamma.$ Then $\gamma(E)=0$ if and only if $H^1(E)=0$

- Surprisingly, this conjective is rather difficult to prove; Chronologically we have the following:
 - $\bullet\,$ In 1950, L. Ahlfors and A. Buerling showed that the Denjoy conjecture holds if Γ is a straight line
 - In 1962, L. D. Ivanov showed that the Denjoy conjecture is valid if $\Gamma \in C^{1+\varepsilon}$
 - In 1972, A. M. Davie proved that the Denjoy conjecture is valid if $\Gamma \in C^1$
 - Finally in 1977, A. P. Calderón showed that the Cauchy Integral operator²(for C¹ curves) is bounded on L^p (1 that Denjoy's conjecture is a (long) corollary of this theorem

 $^{2}\mathcal{L}_{op} = \int_{\gamma} d\mu(\xi) \frac{1}{z-\xi}$

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Denjoy's Conjecture History and Introduction

In 1909 Arnaud Denjoy made the following conjecture (and provided an incorrect proof within a year)

Conjecture

(Denjoy) Let $E\subset\mathbb{C}$ be a subset of a rectifiable curve $\Gamma.$ Then $\gamma(E)=0$ if and only if $H^1(E)=0$

- Surprisingly, this conjective is rather difficult to prove; Chronologically we have the following:
 - $\bullet\,$ In 1950, L. Ahlfors and A. Buerling showed that the Denjoy conjecture holds if Γ is a straight line
 - In 1962, L. D. Ivanov showed that the Denjoy conjecture is valid if $\Gamma\in C^{1+\varepsilon}$
 - In 1972, A. M. Davie proved that the Denjoy conjecture is valid if $\Gamma\in C^1$
 - Finally in 1977, A. P. Calderón showed that the Cauchy Integral operator²(for C¹ curves) is bounded on L^p (1 that Denjoy's conjecture is a (long) corollary of this theorem

 $^{2}\mathcal{L}_{op} = \int_{\gamma} d\mu(\xi) \frac{1}{z-\xi}$

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Denjoy's Conjecture History and Introduction

In 1909 Arnaud Denjoy made the following conjecture (and provided an incorrect proof within a year)

Conjecture

(Denjoy) Let $E\subset\mathbb{C}$ be a subset of a rectifiable curve $\Gamma.$ Then $\gamma(E)=0$ if and only if $H^1(E)=0$

- Surprisingly, this conjective is rather difficult to prove; Chronologically we have the following:
 - $\bullet\,$ In 1950, L. Ahlfors and A. Buerling showed that the Denjoy conjecture holds if Γ is a straight line
 - In 1962, L. D. Ivanov showed that the Denjoy conjecture is valid if $\Gamma\in C^{1+\varepsilon}$
 - In 1972, A. M. Davie proved that the Denjoy conjecture is valid if $\Gamma \in C^1$
 - Finally in 1977, A. P. Calderón showed that the Cauchy Integral operator² (for C¹ curves) is bounded on L^p (1

 $^2\mathscr{L}_{op} = \int_{\gamma} d\mu(\xi) \, \frac{1}{z-\xi}$

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Denjoy's Conjecture History and Introduction

In 1909 Arnaud Denjoy made the following conjecture (and provided an incorrect proof within a year)

Conjecture

(Denjoy) Let $E\subset\mathbb{C}$ be a subset of a rectifiable curve $\Gamma.$ Then $\gamma(E)=0$ if and only if $H^1(E)=0$

- Surprisingly, this conjective is rather difficult to prove; Chronologically we have the following:
 - $\bullet\,$ In 1950, L. Ahlfors and A. Buerling showed that the Denjoy conjecture holds if Γ is a straight line
 - In 1962, L. D. Ivanov showed that the Denjoy conjecture is valid if $\Gamma\in C^{1+\varepsilon}$
 - In 1972, A. M. Davie proved that the Denjoy conjecture is valid if $\Gamma\in C^1$
 - Finally in 1977, A. P. Calderón showed that the Cauchy Integral operator² (for C¹ curves) is bounded on L^p (1

$$^{2}\mathscr{L}_{op} = \int_{\gamma} d\mu(\xi) \, \frac{1}{z-\xi}$$

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

・ロト ・同ト ・ヨト ・ヨト ・のへつ

Denjoy's Conjecture Preliminaries

Unfortunately there are quite a few tools from functional analysis needed to prove this theorem; however, I will try to summarize the main ideas in the proof that center around the L^p-boundedness of the Cauchy transform, C_μ = ∫ dμ(ξ)/ξ-z for z ∉ E and sptμ ⊂ E.

Definition

Suppose we are given a linear operator T. Now define a linear operator T_{ε} in the principal value sense (like the Hilbert Transform) so that $T_{\varepsilon}\{f(x)\} = \int_{|x-y|>\varepsilon} f(y)K(x,y)d\mu(y)$ and $\lim_{\varepsilon\downarrow 0} T_{\varepsilon} = T$. Now define the T^* operator by $T^*f(x) = \sup_{\varepsilon>0} |T_{\varepsilon}f(x)|$. In essence the T^* operator acts as an upper bound for T.

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

▲冊▶ ▲目▶ ▲目▶ 目目 のなべ

Denjoy's Conjecture Preliminaries

Unfortunately there are quite a few tools from functional analysis needed to prove this theorem; however, I will try to summarize the main ideas in the proof that center around the L^p-boundedness of the Cauchy transform, C_μ = ∫ dμ(ξ)/ξ-z for z ∉ E and sptμ ⊂ E.

Definition

Suppose we are given a linear operator T. Now define a linear operator T_{ε} in the principal value sense (like the Hilbert Transform) so that $T_{\varepsilon}\{f(x)\} = \int_{|x-y|>\varepsilon} f(y)K(x,y)d\mu(y)$ and $\lim_{\varepsilon \downarrow 0} T_{\varepsilon} = T$. Now define the T^* operator by $T^*f(x) = \sup_{\varepsilon>0} |T_{\varepsilon}f(x)|$. In essence the T^* operator acts as an upper bound for T.

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Denjoy's Conjecture Preliminaries

Definition

A holomorphic function f on a set $\Omega \subset \mathbb{C}$ is said to belong to the class $E^p(\Omega)$ if there exists a sequence of rectifiable Jordan cruves, $\Gamma_1, \ldots, \Gamma_n, \ldots$ in Ω such that $\Gamma_n \to \partial \Omega$ (so that eventually Γ_n surrounds every compact subdomain of Ω) and $\int_{\Gamma_n} |f(z)|^p |dz| \leq C < \infty$

Definition

A d-dimensional *Lipschitz Graph* is a subset of \mathbb{R}^n of the form $\{(x, f(x)) : x \in \mathbb{R}^d\}$ where $f : \mathbb{R}^d \to \mathbb{R}^{n-d}$ is a Lipschitz map or is the image of such a subset by rotation.

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Denjoy's Conjecture Preliminaries

- N ote that $E^{p}(\Omega)$ is essentially an analogue of the Hardy Spaces $H^{p}(\mathbb{D})$ (i.e. the set of functions such that $\sup_{0 < r < 1} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta\right)^{\frac{1}{p}} < \infty$) to an arbitrary set Ω
- If f ∈ E²(Ω) then f(z) = 1/(2π) ∫_Γ f(ξ)/(ξ-z) dH¹(ξ) for z ∈ Ω. This implies that the Cauchy Transform on Γ = ∂Ω exists for all f ∈ E¹(Ω). In order to show the boundedness of this transform on Lipschitz Graphs, we need to use a variant of the argument used to show that L^p → L^p; however, since E¹ is analagous to H¹ the duality argument needs to be adjusted as the (E¹)* = BMO.
- Now note that P. Garabedian showed that $\gamma(\Gamma)^{1/2} = \sup\{|h'(\infty)| : h \in E^1(\Omega), ||h||_{E^2(\Omega)} \le 1\}$ by solving the dual extremal problem $\inf\{||g||_{E^1(\Omega)} : g \in E^1(\Omega), g(\infty) = 1\}$. The proof involve the fact that the Szëgo kernel $K_x(y) = \frac{1}{1 \overline{xy}}$ is the reproducing kernel of $E^2(\Omega)$ (i.e. the kernel such that $\langle f, K_x(y) \rangle = f(x + iy)$).

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Denjoy's Conjecture Preliminaries

- N ote that $E^{p}(\Omega)$ is essentially an analogue of the Hardy Spaces $H^{p}(\mathbb{D})$ (i.e. the set of functions such that $\sup_{0 < r < 1} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta\right)^{\frac{1}{p}} < \infty$) to an arbitrary set Ω
- If f ∈ E²(Ω) then f(z) = 1/(2πi) ∫_Γ f(ξ)/(ξ-z) dH¹(ξ) for z ∈ Ω. This implies that the Cauchy Transform on Γ = ∂Ω exists for all f ∈ E¹(Ω). In order to show the boundedness of this transform on Lipschitz Graphs, we need to use a variant of the argument used to show that L^p → L^p; however, since E¹ is analagous to H¹ the duality argument needs to be adjusted as the (E¹)* = BMO.

• Now note that P. Garabedian showed that $\gamma(\Gamma)^{1/2} = \sup\{|h'(\infty)| : h \in E^1(\Omega), ||h||_{E^2(\Omega)} \le 1\}$ by solving the dual extremal problem $\inf\{||g||_{E^1(\Omega)} : g \in E^1(\Omega), g(\infty) = 1\}$. The proof involve the fact that the Szëgo kernel $K_x(y) = \frac{1}{1-\overline{xy}}$ is the reproducing kernel of $E^2(\Omega)$ (i.e. the kernel such that $\langle f, K_x(y) \rangle = f(x+iy)$).

Denjoy's Conjecture Preliminaries

- N ote that $E^{p}(\Omega)$ is essentially an analogue of the Hardy Spaces $H^{p}(\mathbb{D})$ (i.e. the set of functions such that $\sup_{0 < r < 1} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta\right)^{\frac{1}{p}} < \infty$) to an arbitrary set Ω
- If f ∈ E²(Ω) then f(z) = 1/(2πi) ∫_Γ f(ξ)/(ξ-z) dH¹(ξ) for z ∈ Ω. This implies that the Cauchy Transform on Γ = ∂Ω exists for all f ∈ E¹(Ω). In order to show the boundedness of this transform on Lipschitz Graphs, we need to use a variant of the argument used to show that L^p → L^p; however, since E¹ is analagous to H¹ the duality argument needs to be adjusted as the (E¹)* = BMO.
- Now note that P. Garabedian showed that $\gamma(\Gamma)^{1/2} = \sup\{|h'(\infty)| : h \in E^1(\Omega), ||h||_{E^2(\Omega)} \le 1\}$ by solving the dual extremal problem $\inf\{||g||_{E^1(\Omega)} : g \in E^1(\Omega), g(\infty) = 1\}$. The proof involve the fact that the Szëgo kernel $K_x(y) = \frac{1}{1-\overline{xy}}$ is the reproducing kernel of $E^2(\Omega)$ (i.e. the kernel such that $< f, K_x(y) >= f(x+iy)$).

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

▲冊▶ ▲目▶ ▲目▶ 目目 ののの

Denjoy's Conjecture

- We will show the contrapositive, i.e. that $H^1(E) > 0 \Rightarrow \gamma(E) > 0$.
- As the Cauchy Transform is bounded, we simply need to find an example of a function whose Cauchy Transform relies on $H^1(E) \Rightarrow \chi_E$ so that $\gamma(E) > 0$

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Denjoy's Conjecture Super Sketch(y) Proof

Proof.

Let Γ be Lipschitz graph and let $f \in E^2(\Gamma, ds)$ (where the measure ds refers to arc length). Define the following integral transform, \mathscr{C} :

$$\mathscr{C}f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)}{z-\xi} dH^{1}(\xi)$$

where H^1 is the 1-dimensional Hausdorff Measure (not $H^1(\Omega)$ the Hardy Space). We know that the operator \mathscr{C} is bounded² on $E^2(\Gamma, ds)$. Therefore, $\mathscr{C}f$ has boundary values \mathscr{C}^*f on Γ and $\mathscr{C}^*f \in L^2(\Gamma, ds)$ so that $\mathscr{C}f \in E^2(\Omega)$ where $\Omega \subset \mathbb{C}$ with boundary Γ . Now let $E \subset \Gamma$ be compact and approximate \tilde{E} by a finite (cover) of subarcs of Γ . Now note that $\mathscr{C}_{\chi_{\tilde{E}}} \in E^2(\Omega)$ as $\chi_{\tilde{E}} \in L^2(\Gamma, ds)$ and subsequently

$$|\mathscr{C}'_{\chi\tilde{\boldsymbol{E}}}(\infty)| = \frac{1}{2\pi} H^{1}(\tilde{\boldsymbol{E}})$$

Therefore from the Garabedian formula, $|\mathscr{C}'_{\chi_{\tilde{E}}}(\infty)| = \frac{1}{2\pi}H^1(\tilde{E}) \leq |h'(\infty)|^2 = \gamma(\Gamma)$ so that if $H^1(\tilde{E}) > 0$ then $\gamma(\tilde{E}) > 0$. The monotonicity of γ implies that $\gamma(E) > 0$.

^aSteve's Presentation on 04/28/09

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Vitushkin's Conjecture

• An even more far-reaching generalization of Denjoy's Conjecture is Vitushkin's Conjecture (1968) which is:

Conjecture

Let $E \subset \mathbb{C}$ be a compact set with $H^1(E) < +\infty$. Then E is removable for bounded analytic functions if and only if E is purely 1-unrectifiable

• G. David proved this theorem in 1998 using his *Tb* theorem; unfortunately this theorem's proof is a one-hundred page paper full of Harmonic analysis, which makes the proof impossible to present.

Hausdorff Measure and Analytic Capacity Garnett's Counter-Example Denjoy and Vitushkin Conjectures

Vitushkin's Conjecture

• An even more far-reaching generalization of Denjoy's Conjecture is Vitushkin's Conjecture (1968) which is:

Conjecture

Let $E \subset \mathbb{C}$ be a compact set with $H^1(E) < +\infty$. Then E is removable for bounded analytic functions if and only if E is purely 1-unrectifiable

• G. David proved this theorem in 1998 using his *Tb* theorem; unfortunately this theorem's proof is a one-hundred page paper full of Harmonic analysis, which makes the proof impossible to present.

- For the most part, Painlevé's Problem has been solved using the useful notion of Analytic Capacity
- Crucial results in the analytic characterization of removable sets have been found
- However, a truly geometric characterization of the removable sets of C has yet to happen (as very little is know about the behavior of removable sets E such that H¹(E) = ∞)

- For the most part, Painlevé's Problem has been solved using the useful notion of Analytic Capacity
- Crucial results in the analytic characterization of removable sets have been found
- However, a truly geometric characterization of the removable sets of C has yet to happen (as very little is know about the behavior of removable sets E such that H¹(E) = ∞)

- For the most part, Painlevé's Problem has been solved using the useful notion of Analytic Capacity
- Crucial results in the analytic characterization of removable sets have been found
- However, a truly geometric characterization of the removable sets of C has yet to happen (as very little is know about the behavior of removable sets E such that H¹(E) = ∞)

For Further Reading I

- 嗪 Pajot, Hervé (2002). Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral. Lecture Notes in Mathematics. Springer-Verlag.
- 📡 J. Garnett, Positive length but zero analytic capacity, Proc. Amer. Math. Soc. 21 (1970), 696-699

No. David, Unrectifiable 1-sets have vanishing analytic capacity, Rev. Math. Iberoam. 14 (1998) 269-479

📎 Mattila, Pertti (1995). Geometry of sets and measures in Euclidean spaces. Cambridge University Press.

📎 Garnett, John (1981). *Bounded Analytic Functions*. Academic Press

For Further Reading II

- 嗪 P. R. Garabedian, Schwarz's lemma and the Szegö kernel function, Transactions of the American Mathematical Society Volume 67 (1949), p 1-35
- Network Stein, Elias M (1970). Singular integrals and differentiability properties of functions. Princeton, NJ: Princeton University Press
- 📎 Stein, Elias M. and Shakarchi, Rami (2003). Complex analysis. Princeton Lectures in Analysis, II. Princeton, NJ: Princeton University Press.

Network Andreas Market Andreas Andreas Andreas Andreas Collected Papers, 📎 📎 1929-1955. Stuttgart: Birkhäuser.