
Senior Thesis Problem Statement

Tarun Chitra

February 14, 2011

Abstract

We brie�y summarize the mathematical and physical motivation for the Anti-de-Sitter Space/Conformal Field
Theory (AdS/CFT) Correspondence and its relationship to the construct of an in�nite family of 5-dimensional Sasaki-
Einstein Manifolds. A statement of the (thesis) problem at hand is then described.

1 Introduction

The Anti-de-Sitter Space/Conformal Field Theory correspondance is a derived result of String Theory that posits
a geometric relationship between Gauge Theories and the space-times of General Relativity [2, 22]. Physically, the
AdS/CFT correspondance states that if one has the n-dimensional Anti de Sitter Space, M = AdSn as a model of
spacetime, then the partition function associated to a given conformal structure on M is determined by the vacuum
expectation value of a linear functional J on Sym(2, ∂M), the set of symmetric 2-tensors on ∂M . On the other hand,
the correspondence conjectures a mathematical relationship between an asymptotically hyperbolic, Einstein metric g on
a n + 1-dimensional manifold with boundary M and the restriction to ∂M of the nth term in the Fe�erman-Graham
expansion of geodesically equivalent Einstein metric. In physics, such a relationship arose from the discovery that certain
5-dimensional Riemannian Manifolds X5 give rise to a string background AdS5 ×X5 such that the choice of metric g
on X5 could determine the central charge of a Conformal Field Theory on ∂(AdS5).

The goal of this paper is to determine the spectrum of the Hodge-de Rham Laplacian on forms for a particular family
of 5-manifolds X5 that satisfy both physical and mathematical constraints unique to this physical "duality" problem.
In particular, there is a new in�nite family of Sasaki-Einstein 5-manifolds Y p,q that appear to be the best candidates
for non-trivial application of the AdS/CFT conjecture.

This paper is structured so that both the physical and mathematical problems at hand are explicitly described. �2
will provide a brief introduction to the breadth of mathematics required to elucidate the AdS/CFT correspondance while
providing the analyical de�nition of what exactly the correspondance is claiming. �3 will provide a review of the physics
involved and the motivations for studying the manifolds Y p,q. �4 will provide a brief description of Sasaki-Einstein
manifolds as well as the explicit metrics involved. �5 will conclude this paper with a description of the problem at hand.

2 Formal statement of the AdS/CFT correspondance

2.1 Formulating a Conformal Field Theory

While many mathematicians tend to look at String Theory as most similar to Algebraic Geometry, the AdS/CFT
correspondance provides both an analytic and di�erential geometric point-of-view of String Theory and Conformal Field
Theories. Before arriving at the more analytic description of the correspondance, let's consider the bare necessities
for a mathematical formulation of a Conformal Field Theory. Let M be an n-dimensional Manifold that will serve as
our Con�guration Space of possible physical states. In order to describe a Conformal Field Theory, one needs a linear
functional1 J : TM⊗T ∗M → R, called an action, that is (locally) invariant under the group of conformal transformations
of Rn,Conf(Rn). In order to determine quantities of interest, one would ideally like to compute how the action (which
contains all the physics) describes the time-evolution of a particle over a speci�c path γ : [0, 1] → M . However, this
implies that we are integrating over the set of all C∞ paths γ. This set is necessarily and in�nite-dimensional space, since
for each chart ϕα : Uα ⊂M → Rn, the set of all paths contained in Uα is C∞([0, 1],Rn) which is an in�nite-dimensional
Banach Space. It is a standard result of Real Analysis that there exists no translational-invariant, in�nite-dimesional
Banach Space and as such a "sum over all paths" is not mathematically well-de�ned. A crucial symmetry in physics
in Poincaré Symmetry, which is invariance of J under the action of the n-dimensional Poincaré Group SO(n) o Rn.
Intuitively, this invariance says that the energetics of a physical system, as prediced by the action J , should not change
under a change of origin (translation) or a rotation. As such it is physically necessary that the action J be translational-
invariant, so a precise formuation of the "expectation of physical event A with respect to the constraints contained

1Notation: TM is the tensor algebra of TM amd T ∗M is the tensor algebra of T ∗M
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in J" is currently unknown. However, physicsists have come up with clever ways to approximate such "non-existent"
expectations.

In the physics literature, the expectation value of the functional J is typically presented in the form of a Feynman
Path Integral that sums over the restriction to ∂M of "all Einstein metrics" on M . While this initially seems to be an
ill-de�ned object, G. Segal and M. Kontsevich have proposed a mathematical de�nition2 of the expectation with respect
to a Gaussian measure on Teich(M), the Teichmüller Space of M [26]. From an analytic perspective this should be
well-de�ned, since the Teich(M) is in general a Banach Space. This paper will not be concerned with the ambiguity in
the expectation value since the main goal of this thesis is analytic in nature.

2.2 Analytic De�nition of the Correspondance

We will assume that any manifold M de�ned is of class C∞. Moreover, we will restrict ourselves to the category
of Einstein Manifolds (M, gE), which have Ric(u, v) = κgE , u, v ∈ TM, κ ∈ R. Let us �rst de�ne what exactly a
Conformally Compact metric is [7]:

De�nition 2.1. Suppose that we have an n + 1 dimensional Riemannian Manifold with non-empty boundary, (M, g).
Let M be the interior of M and let ∂M be the boundary of M . A complete Riemannian metric g on M is conformally

compact if there exists a function ρ ∈ Ω0(M) such that g = ρ2g, ρ−1(0) = ∂M and dρ 6= 0 on ∂M . Such a function ρ
is called a de�ning function3 for the pair (M,M)

De�ne γ := g|∂M which is the boundary metric on M and letM,M∂ be the moduli spaces of metrics and boundary
metrics on conformally compact, n + 1 dimensional Einstein manifolds with non-empty boundary, respectively. The
choice of γ is in general not unique because there can be many de�ning metrics for a given M . Instead, we will work
with boundary metrics γ de�ned up to conformal transformation; that is, we consider the equivalence class [γ] under
the relation,

γ′, γ ∈M∂ , γ
′ ∼ γ ⇐⇒ ∃f : M → R, Im(f) ⊂ (0,∞), γ′ = fγ

Note that since we are considering boundary metrics up to conformal transformation we are indeed only interested
in M∂ := Teich(M)/MCG(M) as opposed to Teich(M), since di�eomorphic manifolds will have the same conformal
structure. Moreover, note that the physical interpretation of the boundary metric [γ] is embodied in Penrose's notion
of Conformal In�nity. The idea is that the causal structure of spacetime (i.e. whether a geodesic is timelike, null or
spacelike) is preserved under conformal transformations so that singularities (such as Black Holes) can be more easily
analyzed.

In order to simply the mathematical content of the AdS/CFT correspondence, assume that we are in a regime that
satis�es the vacuum Einstein equations, Gµν = 0, where Gµν is the Einstein Tensor. We de�ne the Einstein-Hilbert
action, SEH :M→ R by

SEH(g) :=

∫
M

KdVg

where K is a Gaussian Curvature of (M, g) and dVg is the volume form associated to g. In coordinates, this reduces to
the more recognizable action, SEH =

∫
M
dn+1x

√
gR, where R is the Ricci Scalar Curvature. Heuristically, one can say

that the AdS/CFT correspondence takes boundary data (∂M, [γ]) and derives a partition function for (M, g). Finally let
M(∂M,[γ]) :=

{
g ∈M|∃ρ ∈ Ω0(M) 3 g = ρ2g, γ = g|∂M

}
so that given these de�nitions, the AdS/CFT correspondence

can be summarized by the following equation:

ZCFT (∂M, [γ]) =
∑

g∈M(∂M,[γ])

e−SEH(g) (1)

where ZCFT is the partition function associated to a conformal �eld theory associated with the conformal structure [γ] on
∂M . Note that the principle concept behind the sum on the right hand side is that we are summing over all Conformally
Compact Einstein Manifolds (M, g) given the boundary data (∂M, [γ]). However, it is clear that (1) doesn't provide
any intuition as to the analytic aspects of the AdS/CFT conjecture. This is where the Fe�erman-Graham expansion
and the asymptotic hyperbolicity of the metric come into play. Recall that a metric g is hyperbolic if it has constant,
negative sectional curvature. We can now de�ne what an asymptotically hyperbolic metric is:

2Segal and Kontsevich formulate Conformal Field Theory in terms of Cobordism Classes of compact, connected 2-manifolds that resemble
the worldsheets of String Theory. This functorial de�nition constructs Conformal Field Theory in terms of a Generalized Cohomology Theory,
with two compact, connected Riemann Surfaces M,N deemed equivalent i� M is cobordant to N . I have a bit of trouble connecting this
description with the analytic aspects of Field Theories, so I've chosen to ignore it for the most part.

3Note that we assuming that ρ is of class C∞. This de�nition has been expanded in the following way: A metric g is said to be Lk,p or
Cm,α conformally compact if there exists a de�ning function such that g has an Lk,p or Cm,α extension toM , where Lk,p is the (k, p)−Sobolev
Space and Cm,α is the (m,α)−Hölder space. See [3] for details
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De�nition 2.2. Again suppose that we have an n + 1 dimensional Riemannian Manifold with non-empty boundary,
(M, g). Let M be the interior of M and let ∂M be the boundary of M . We say that g is asymptotically hyperbolic

if g|∂M is hyperbolic.

Now there are some interesting properties about asymptotically hyperbolic Einstein metrics, namely that they have
a canonical form in which they can be expressed as a cone over a a family of hypersurface metrics. This splitting comes
via the Gauss Lemma and represents the �rst analytic formulation of the AdS/CFT conjecture. Let detail this process a
bit. Suppose that we choose a de�ning function ρ(x) = dḡ(x, ∂M) in a collar neighborhood4 of ∂M . A de�ning function
of this type is called a geodesic de�ning function, since the minimization of ρ(x) will solve a geodesic-like problem on
the conformal in�nity (M̄, ḡ).

It is possible to prove that given a boundary metric [γ] in the conformal in�nity of (M, g) there exists a unique
geodesic de�ning function ργ that has γ as the boundary metric on (M̄, ḡ) [4]. The proof boils down to reformulating
the uniqueness problem in terms of a Cauchy problem on the collar neighborhood U . Recall the Gauss Lemma of
Riemannian Geometry [29]:

Lemma. (Gauss) The radial geodesic through the point p = exp(ξ), ξ ∈ TpM is orthogonal to the Riemann Hypersurface
Σp that passes through p.

If we choose p ∈ ∂M , then this says that in some normal (or inertial) neighborhood U of p, we can write the metric
ḡ|U = dt2 + gΣp |U . Since we can choose a boundary metric up to conformal transformation, the choice of a geodesic
de�ning function gives a conformal class of metrics such that globally we have ḡ = dt2 +gt, where gt is a family of metrics
on hypersurfaces where t = t′. Now we can de�ne the Fe�erman-Graham expansion of the metric ḡ as the truncated
Taylor Series expansion of gt. Explicitly for an n-dimensional Riemannian Manifold (M, g) with conformal in�nity, this
expansion is [14]:

gt = g0 + tg1 + t2g2 + t3g3 + . . .+ tng(n) +O(tn+α) (2)

Given the above background, the conjecture is e�ectively the dimension n = 5 version of the following dimension
n = 4 theorem [3, 6]:

Theorem. If dimM = 4 and the boundary metric γ is of class5 C7,α. Then the pair (γ, g(3)) on ∂M uniquely determined
an Asymptotically Hyperbolic Einstein metric up to local isometry. This means that if g1, g2 are two AH Einstein
metrics on manifolds M1,M2 with ∂M = ∂M1 = ∂M2 such that with respect to the aforementioned compacti�cations
(M̄1, ḡ1), (M̄2, ḡ2), we have:

γ1 = γ2 and g1
(3) = g2

(3)

then g1, g2 are locally isometric and M1,M2 have di�eomorphic universal covers.

This e�ectively says that given a boundary metric γ and an n-th order approximation of the interior metric g, we
can compute g up to local isometry. For physical purposes, one desires knowledge of the null and timelike geodesics, so
that this uniqueness up to local isometry is "good enough." Moreover, the hoice of boundary metric γ places essentially
de�nes the boundary Energy-Momentum Thensor, so the above theorem will yield the Energy-momentum tensor for
the entire spacetime M . The case of dimM = 5 appears to not have been proved completely yet. In the next section,
we will show how a choice of String Theory background (a geometric constaint) �xes the equivalence class [γ] so that
the above theorem can be used.

2.3 Geometric Description of the Correspondance

As mentioned in the introduction, the AdS/CFT correspondance is closely tied together with Complex Geometry
and String Theory. Let's �rst give a short description of the geometric structures associated with String Theory. String
Theory purports that if strings that obey known symmetries6 as well as supersymmetry exist, then the total spacetime
manifold M must be 10-dimensional. As such, most early formulations of string theory assumed that M = R1,3×X6,
whereX6 is either a 6-dimensional real manifold or a 3-dimensional complex manifold. The idea is that ifX6 ↪→ R12 ∼= C6

is contained in a ball of radius r in R12 or C6, then as r → 0, M would begin to look like Minkowski Space, R1,3. This

4Recall that a collar neighborhood U of an n-manifoldM with boundary is an open set U ⊂ R2n such that U is di�eomorphic to ∂M×[0, ε).
The Whitney Embedding Theorem guarantees the existence of such a neighborhood in R2n.

5Recall that the Hölder Spaces Ck,α(Ω),Ω ∈ Rn are the topological vector spaces of functions f : Ω → R that are k times continuously
di�erentiable and such that f is Hölder continuous with exponent α. This means that ∀x, y ∈ Ω, |f(x)− f(y)| ≤ C|x− y|α.

6Recall that for a symplectic manifold (M,ω), the Lagrangian formulation of physics on M allows for all physical quantities to be written
in terms of a linear functional that can be extremized via an Euler-Lagrange equation. For purposes of this paper, we will consider the
Lagrangian to be a linear functional Λ : L2(

∧•M,dm)→ R. In this situation, a symmetry of a Lie Group G with an action on Γ(TM) such
that ∀f ∈ L2(

∧•M,dm), f, ω are invariant under the �ows of g · ~v,~v where ~v ∈ Γ(TM)
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means that all known physics, which requires a background of Minkowski space or a locally-Minkowski space (i.e. a
Lorentzian Manifold), could be preserved if the embedding radius r of X6 is quite small. The idea then was that the
"worldsheet" of the string would be an embedded submanifold of X6, independent of R1,3. The strings would e�ect the
evolution of a physical system in M , for example, since an operator such as the Laplacian would have contributions
from X6, but it would be disjoint from it. Physicists denote conserved quantities of the evolution of a physical system
in X6 (which is guided by extremizing a linear functional J : L2(

∧•
X6 → R) as Stringy Corrections. Note that because

Complex Manifolds inherently have an integrable structure with an easy way to check symplectic and di�erentiable
structure integrability (i.e. via the Newlander-Nirenberg Theorem), almost all models for X6 were complex.

However in the early-1990s, there was some compelling evidence that suggested that one should consider spacetime
manifolds M that decompose as M = X × Y with dimX = dimY = 5. The idea stemmed from the fact that the
5-dimensional Anti de Sitter space, AdS5 can be viewed as the Lorentzian analogue of the hyperbolic space Hn [2]. More
precisely, we can de�ne AdS5 as via the locus of the quadratic polynomial f on R6 with coordinates (x1, x2, x3, x4, S, T ),

f(x1, x2, x3, x4, S, T ) := x2
1 + x2

2 + x2
3 + x2

4 − S2 − T 2 + 1 (3)

It is clear that f is a submersion, since dF (~x) = (2x1, 2x2, 2x3, 2x4,−2S,−2T ) so that the submersion level set theorem
says that this zero locus is an embedded, 5-dimensional submanifold of R6. Note that the induced metric on AdS5 is
gAdS5

(∂1, . . . , ∂4, ∂S , ∂T ) = dx1 + . . . dx4 − dS2 − dT 2, so that AdS5 is the Lorentzian analogue of the Hyperbolic Space
H5. Moreover, note that the surfaces with constant x1, T are copies of R1,3 As such we can view AdS5 as a set of
hypersurfaces Σx1,T that are isometric to R1,3 with a scaling factor of R2 := x2

1 − T 2. The idea is that we are using one
of the six remaining (and remember, required) dimensions to construct a space that heuristically "warps" Minkowski
Space. The heuristic idea is that if X = AdS5 and Y is a 5-dimensional manifold, then it is possible for a stringy
correction to depend on which Σx1,T is chosen. This means that a string theory e�ect can somehow a�ect the spacetime
manifold that we perceive, in this case R1,3.

As it turns out, our current knowledge of physics and our desire to have supersymmetry heavily constrains the
choice of manifold Y we choose. Let us brie�y review some of the main assumptions in the decomposition of spacetime
as M = R1,3×X6. The main condition enforced is that X6 has a Kähler metric and is Ricci-Flat7. The Kähler
metric can be heuristically justi�ed on the grounds that classical mechanics formally requires a symplectic form while
quantum mechanics requires symmetries to be preserved under unitary transformations. The Ricci-Flat condition
implies that our X6 satis�es the vacuum Einstein equations G(êµ, êν) = T (êµ, êν) where G is the Einstein 2-tensor,
G(êµ, êν) := Ric(êµ, êν) − 1

2gX6
(êµ, êν)R and T ∈ TM ⊗ TM is a symmetric 2-tensor8. A complex manifold that is

Kähler and Ricci-Flat is known as a Calabi-Yau Manifold. Physicists have been interested in these manifolds precisely
because they are compatible with the symmetries of nature and serve as a good starting point. However, while Yau
proved that such manifolds exist, no explicit metric has ever been found so this has made analysis on these spaces
di�cult. For completeness and for use in �4, let us give some equivalent de�nitions of a Calabi-Yau Manifold:

Theorem. For a compact complex n-manifold (M, g), the following are equivalent:

• M is a Calabi-Yau

• Holg(M) ⊂ SU(n)

• The �rst Chern Class of M , c1(M) vanishes

• The canonical bundle of M is trivial

• M admits a global, non-vanishing holomorphic n-form

The AdS/CFT correspondance e�ectively conjectures that for a certain class of 5-manifolds Y , we can still preserve
the symmetries required to have a well-de�ned string theory and that the choice of metric on Y uniquely determines the
conformal boundary [γ] of AdS5 [2, 4, 22]. The conjecture was initially formulated with AdS5 × S5, where S5 is given
the round metric and with AdS5 × S2 × S3, where S2 × S3 is given the homogeneous metric.9 However, these examples
are considered trivial in that they admit free, proper U(1) actions so that given a U(1) action, any quotient of S5 or
S2 × S3 by this action will be a Kähler-Einstein Manifold with positive curvature [23]. However, physically this is too
restrictive as Maxwell's Laws are usually mathematically generalized to the set U(1)-valued Ehresmann connections.
This means that one only requires a periodic U(1) orbit as opposed to a free U(1) orbit. Recently, a new in�nite class of

7This means that the Ricci Scalar R := tr(Ric(êi, êj)), for any local frame {êi} vanishes
8Physically, this is the Energy-Momentum Tensor
9Recall that S2 ≈ SO(3)/SO(2) and S3 ≈ SU(2) so that the product can be considered a homogeneous space
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5-manifolds that are compatible with AdS/CFT correspondance and admit both free and non-free U(1) orbits have been
constructed. This class of manifolds subsumes S5, S2 × S3 and represent Sasaki-Einstein Manifolds. These manifolds
are de�ned and analyzed in �4.

3 Why Sasaki-Einstein Manifolds?

Long Story Short: Physical contraints, such as the desire to preserve supersymmetry and Ricci-�atness of the metric
on X5, led String Theorists to consider Sasaki-Einstein Manifolds as a good model of the AdS/CFT Correspondance.
From Yau's Theorem, one knows that if a complex n-manifold M has Hol(M) ⊂ SU(n), then M admits a Ricci-�at,
Kähler metric. In order to �nd a 5-dimensional counterpart to AdS5, the authors of [1] showed that the most natural
5-manifold to consider is the Sasaki-Einstein Manifold. Moreover, it can be shown that Sasaki-Einstein Manifolds admit
a Killing Spinor (for a "canonical" spin bundle that one can de�ne on a Sasaki-Einstein Manifold) which implies that it
is possible to preserve supersymmetry.
To be completed!

4 The geometry of the the Y p,q Manifolds

4.1 Brief Overview of Sasaki-Einstein Manifolds

In this section, we will only consider manifolds of dimension 5 and higher. Let us start with the most cogent de�nition
of a Sasaki-Einstein Manifold:

De�nition 4.1. An odd-dimensional, compact, real Riemannian manifold (M, g) is Sasaki-Einstein i� it is Einstein
and its metric cone (C(M), g), C(M) ∼= R+×M, g = dr2 + r2gM is Kähler and Ricci-�at, or in other words Calabi-Yau.
We will naturally identity M via as {1} ×M ⊂ C(M)

This brief introduction will will follow �1 of [28] and portions of Chapters 3,6 and 11 of [8], which is relatively
recent and complete monograph on Sasakian Geometry. Since a Sasaki-Einstein Manifold has a Kähler cone, it inherits
many of the nice features of Kähler and Symplectic manifolds. In particular, the odd dimensional cousins of Kähler
and Symplectic geometries are CR and Contact Geometries, respectively. One can think of contact geometry as an
odd-dimensional analogue of symplectic geometry, inspired by classical mechanics with a con�guration space that also
depends on time. More formally, we de�ne a Contact Structure (M,η) on an 2n + 1 manifold M with one-form η if
η ∧ (dη)n is a volume form. In that case of a Sasaki-Einstein Manifold M , if ωḡ is the Kähler form of C(M), then one
can prove ([8], �6.4-6.5) that the Kähler potential can always be put in the form ωḡ = d(r2η) for a one-form η on C(M).
This means that r2η is a Kähler potential and moreover that for r = 1, we get a non-vanishing one-form on M . Since
dη is also globally non-vanishing, by Khlerity, we get an induced contact structure on M . The following proposition is
quite important (from [8], �6.1):

Proposition. On a contact manifold (M,η) of dimension 2n + 1, there exists a unique vector �eld ξ called the Reeb
Vector Field satisfying the conditions, ξyη = 1, ξydη = 0

The proof is relatively straightforward and gives some intuition about where ξ comes from, so let's go through it:

Proof. Since (M,η) is a contact manifold10 we have a volume form η∧ (dη)n. By the musical isomorphism TM ∼= T ∗M ,
there exists a unique ξ ∈ Γ(TM) such that ξyη = 1 so that ξyη ∧ (dη)n = (dη)n. since (dη)n = dη ∧ dη · · · ∧ dη︸ ︷︷ ︸

n

, is

alternating this means that ξy(dη)n = 0.

For a Sasaki-Einstein manifold, the Reeb Vector Field takes a rather simple form, via a slightly opaque construction.
Consider the homothetic vector �eld, ζ on C(M) is simply ζ := r∂r. Let ∇,∇ be the Levi-Civita connections associated
to g, g, respectively. In order to construct a vector �eld on M that extends naturally to a vector �eld on C(M), we need
to ensure that we have a real analytic vector �eld on M . Let's �rst look at the transport behavior of ζ via the following
formulas [28] hold for X,Y ∈ Γ({1} ×M) ↪→ Γ(C(M)) :

∇ζζ = ζ (4)

∇ζX = ∇Xζ = X (5)

∇XY = ∇XY − g(X,Y )ζ (6)

10When the phrase 'contact manifold' is used, we will mean an strict contact manifold in the sense of [8], page 181
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Heuristically equations (4),(5) imply that a vector �eld X on the base M doesn't change as we move it up the cone
via ζ. Now since C(M) is Kähler, we know that the Almost Complex Structure J : TC(M) → TC(M) associated to
C(M) is parallel, i.e. ∇J = 0. Using these facts we can prove the following claim:

Claim 1. The homothetic vector �eld ζ is real analytic, i.e. LζJ = 0.

Proof. Since ∇,∇ are Levi-Civita connections, the torsion tensor for both connections vanishes. This means that
LζJ = ∇ζJ −∇Jζ. Using (5), it is clear that this vanishes. Similarly if we restrict to the hypersurface {1} ×M , then
using (5), (6), we have,

Lζ|MJ = ∇ζ|MJ −∇J|M ζ = ∇ζ|MJ + g(ζ|M , J)ζ −∇Jζ|M − g(J, ζ|M )ζ = 0

where the last equality holds since the metric is symmetric.

Now de�ne ξ = J(r∂r). We now will show that the η = 1
r2 ξ

[ is a contact form. Recall that given an almost Hermitian
Manifold (M, g, J), we de�ne the Kähler form ωg : TM ⊗TM → R by ωg(X,Y ) := g(X, JY ). The musical isomorphism
gives the formula η(X) = 1

r2 g(X, ξ) = 1
r2ωg(X, r∂r). Since r

2η is the Kähler potential, it is clear that η is non-vanishing
and more over, since the Kähler form is also symplectic, (dη)n is also non-vanishing. As such, η∧(dη)n is a non-vanishing
2n+ 1-form, or in other words it is a volume form.

To Be Finished:
What's left to do:

• Show that 1
2r

2 is the Kähler potential for the cone

• De�ne the metric contact structure

• ∃ a Global Killing Vector that comes from the Global Killing Spinor on the Cone

• Reeb Foliation

• De�ne Regularity, Reeb Foliations

4.2 The Y p,q metrics

4.2.1 Background

Until 2004, it was widely believed that irregular Sasaki-Einstein Manifolds did not exist as per a conjecture by Tian
and Cheeger [9]. However, in 2004 a landmark paper of Sparks, Martelli, Gauntlett and Waldram [13] constructed
an in�nite sequence of Sasaki-Einstein metrics on S2 × S3 which included irregular and quasiregular Sasaki-Einstein
Manifolds. These manifolds, denoted Y p,q are indexed by p, q ∈ Z, (p, q) = 1. Initially, the metrics were described
in coordinates and soon after an argument that relied on a straight-forward application of the Gysin Sequence for the
natural U(1) �bration, U(1) ↪→ Y p,q � Y p,q/U(1) to show that Y p,q was homotopically S2×S3 so that Smale's Theorem
provides the homeomorphism Y p,q ∼= S2 × S3. Later, an explicit di�eomorphism between S2 × S3 and Y p,q was found
[12]. Finally, a paper that generalized the construction of Y p,q to a larger family of metrics that could be de�ned in
any odd dimension 2n + 1 on Sn × Sn+1 was completed [10, 11]. One of these larger family of metrics is denoted
Lp,q,r, p, q, r ∈ Z, 0 ≤ p ≤ q, 0 < r < p + q, (p, q) = (p, r) = (q, r) = 1 and it's construction is far less complicated than
the original construction in [13]. Note that if p+ q = 2r, then Lp,q,r = Y p,q. This section will construct the Lp,q,r metric
due to simplicity and subsequently, we will restrict ourselves to the Laplacian for the Y p,q case.

4.2.2 Construction

We will follow the methodology of [10], which provides a direct route to the Lp,q,r metric from a well-known AdSn
solution of the vacuum Einstein equations with negative cosmological constant. The method of construction can be
summarized as follows:

1. Start with the �ve-dimensional Kerr-de Sitter Black Hole Metrics (in local coordinates) found in [18]. These
metrics represent solutions to Einstein's Field Equations that admit charged, rotating black holes

2. Consider the "Euclideanization" of these metrics, which amounts to a formal analytic continuous of a real n-
manifold to an almost complex n-manifold (i.e. with real dimension 2n)

3. Implement a supersymmetry constraint known as the BPS Scaling Limit

6
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4. Compute the Killing Vectors and Killing Spinors11 associated to the given metric

The �ve-dimensional Kerr-de Sitter metric for a rotating, charged black hole (as per Hawking, et. Al, [18]) in local
coordinates (t, φ, ψ, r, θ) on an open set Uα ⊂ AdS5 is:

g(∂t, ∂φ, ∂ψ, ∂r, ∂θ) = −∆

ρ2

(
dt− a sin θ

Ξa
dφ− b cos2 θ

Ξb

)2

+
∆θ sin2 θ

ρ2

(
a dt− (r2 + a2)

Ξa
dφ

)2

+
∆θ cos2 θ

ρ2

(
b dt− r2 + b2

Ξb
dψ

)2

+
ρ2

∆
dr2 +

ρ2

∆θ
dθ2 +

(1 + r2l−2)

r2ρ2

(
ab dt− b(r2 + a2) sin2 θ

Ξa
dφ− a(r2 + b2) cos2 θ

Ξb
dψ

)2

(7)

where we have:

• a,b are the conserved quantities of the SO(4) ∼= SU(2)× SU(2) symmetry in this metric. E�ectively, they scale the
Killing Vectors that are the in�nitesmal generators of these symmetries

• l is another conserved quantity from the Killing Vector that corresponds to the conserved Energy of the system

• ∆ = 1
r2 (r2 + a2)(r2 + b2)(1 + r2l−2)− 2M

• ∆θ = (1− a2l−2 cos2 θ − b2l−2 sin2 θ

• ρ2 = (r2 + a2 cos2 θ + b2 sin2 θ)

• Ξa = (1− a2l−2)

• Ξb = (1− b2l−2)

Now we can (somewhat) informally extend this metric (at least locally) to the complexi�cation Uα ⊗ C ≈ Rn⊗C.
To see why this is feasible, consider the metric localized in local coordinates over a coframe {dxi(y)}ni=1 for y ∈ Uα
to be de�ned as as g(y) = gij(y)dxidxj . The idea is that since we are complexifying the chart (Uα, ψα), we can also
complexify the local trivialization of Sym(2,M) over Uα. Explicitly, the authors of [10] do this as follows. Consider the
following coordinate transformations:

τ :=

√
λt

i
, λ := −l2, a′ := −ia, b := −ib (8)

Now the next simpli�cation step requires taking a limit that relates a, b, r to λ. E�ectively, this ties all of the three
open parameters a, b, l as well as one coordinate to a single length scale λ. This will immensely simply the metric allowing
us to compute the new simpli�ed Killing Vectors. These transformations come from supersymmetry considerations as
well as conservation of mass and energy. These transformations represent the Bogomol'nyiâ��Prasadâ��Sommer�eld
Limit (BPS Limit) which is a way to bound the conserved quantity derived from the t or τ coordinates (Energy).
E�ectively, we are scaling our free parameters as well as our r coordinate in such a way that the energy E goes to the
BPS Limit as one takes a limit ε ↓ 0, for a perturbation ε. Explicitly, these transformations are:

a = λ−1/2

(
1− 1

2
αε

)
, b = λ−1/2

(
1− 1

2
βε

)
, r2 = λ−1(1− xε),M =

1

2
λ−1µε2 α, β, µ ∈ R (9)

Under a combination of the coordinate transformations (8) and (9), where the limit ε ↓ 0 is taken, our new metric g̃
is de�ned as:

λg̃(∂τ , ∂x, ∂θ, ∂φ, ∂ψ) = (dτ + σ)2 + h(∂x, ∂θ, ∂φ, ∂ψ) (10)

where h is de�ned as:

h(∂x, ∂θ, ∂φ, ∂ψ) =
ρ2dx2

4∆x
+
ρ2dθ2

∆θ
+
ρ2dθ2

∆θ

(
sin2 θ

α
dφ+

cos2 θ

β
dψ

)2

+
∆θ sin2 θ cos2 θ

ρ2

(
α− x
α

dφ− β − x
β

dψ

)2

where we have:

σ =
(α− x) sin2 θ

α
dφ+

(β − x) cos2 θ

β
dψ

∆x = x(α− x)(β − x)− µ
ρ2 = ∆θ − x

∆θ = α cos2 θ + β sin2 θ (11)

11The introduction of spinors and particular spin bundles will be explained as spinors are encountered in this derivations. Keep reading!
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One quick note about why such a transformation requires using an analytic continuation. In physics, one tends to
ignore when one is dealing with a spin bundle and when one is dealing with the tangent or cotangent bundles in order to
simplify computation. However, in General Relativity, one tends to deal with the standard, real tangent and cotangent
bundles of a spacetime manifold M to solve the classical equations of motion. However, when one deals with relativistic
quantum mechanics, a spin bundle S is introduced (either implicitly or explicitly) so that solutions to the Dirac equation,
which involve spinors s ∈ Γ(S), can be developed. As such, this ad-hoc complexi�cation illustrated above serves as a
way to explicitly construct a local trivialization of S �M over some trivializable chart domain Uα ⊂M .

Using Mathematica, one can quickly establish that the Ricci Tensor for the above metric is related to the g̃ by
Ric = 4λg̃ so this metric is Einstein. A further computation shows that R = 0, so that this metric is Ricci-�at.
Moreover, one can use an Rn di�eomorphism to set the free parameter µ = 1 so that the only free parameters are α, β.
Now there are a few angle forms in the above metric (the exact ranges aren't established in [10]) and in particular the
ψ, φ, θ coordinates are periodic (i.e. their chart domains are [0, kπ], where the choice of k isn't explicit). This generates
a U(1) × U(1) × U(1) isometry that will help us elucidate the Killing Vectors associated to g̃. Now note that if we
regard g̃ as representing a local �bration U(1) ↪→ Uα ⊂M � Uα/U(1), where the last quotient is over any of the angle
forms ψ, φ, θ, we can show that the induced metric on the quotient space represents a Kähler-Einstein manifold with
Kähler 2-form ωg̃|Uα = 1

2dσ. Let us sketch out the argument in [13]. Let the metric on N := M/U(1)θ be denoted ĝ.
Firstly, one considers the quotient over the U(1) �ber corresponding to θ and then uses a computation of the �rst Chern
number to show that there exists a coordinate transformation which reduces to the round metric on S2×S2 with trivial
clutching function.12 Moreover, using the other circle coordinates, we can construct a complete open cover of (M, g̃)
(i.e. so that the North Pole, South Pole in the θ coordinate have a non-singular coordinate representation). One can
then construct a basis for H2(N ;Z) ∼= Z⊕Z by looking at the intersection number of chains based in the three di�erent
M/U(1) quotients. Finally, we can dualize these chains and get an explicit basis for H2(S2 × S2;Z) in the coordinates
we are looking at. This basis is [13, 23]:

ω1 =
1

4π
cos ζdζ ∧ (dψ − cos θdφ) +

1

4π
sin θdθ ∧ dφ

ω2 =
1

4π
sin θdθ ∧ dφ (12)

Finally, by taking a linear combination of the above basis vectors for H2(N ;Z) and enforcing hermiticity, one arrives at
the Kähler form on the quotient: ωĝ = 1

2dσ.
We have sketched an argument that shows that (M, g̃) is the total space of three U(1) �brations over a Kähler-

Einstein space that is homeomorphic to S2 × S2. As it turns out, (10) is in a "standard form" for the local expression
of a Sasaki-Einstein metrics so that it is almost automatic that g̃ is Sasaki-Einstein [13]. In the future, this section will
include the full derivation of the Killing Vectors associated to g̃ and how the relationship between the Killing Vectors
and the constraints on p, q, r ∈ Z is established. However, for now, the Killing Vectors and the relationship between the
moduli of the Killing Vectors and p, q, r will simply be stated. Firstly note that we have four Killing Vectors for this
space:

• Killing Vectors that are compatible with the unsuitability of these coordinates at θ = 0, π2 :

∂φ, ∂ψ (13)

This intuitively makes sense, since these vectors vanish when θ = 0, π2 as all the dφ, dψ terms in h have sin θ in
front of them.

• Killing Vectors that are compatible with the unsuitability of these coordinates at the roots of the cubic ∆x, denoted
x1, x2, x3:

`i = ci∂τ + ai∂φ + bi∂ψ (14)

where i ∈ {1, 2} and,

ai =
αci

xi − α

bi =
βci

xi − β
(15)

ci =
(α− xi)(β − xi)

2(α+ β)xi − αβ − 3x2
i

(16)

12Recall that a clutching function for Sn is a map Sn−1 → Sn that serves at the attaching map for the two n-cells D1, D2 that one glues
along ∂Di ∼= Sn−1 to construct Sn. Given a clutching function, one can represent Sn as a CW complex
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suppose that u, v ∈ Q are such that 0 < v < 1,−v < u < v. Then we de�ne p, q, r, s ∈ Z by [19]:

q − p
p+ q

:=
2(v − u)(1 + uv)

4− (1 + u2)(1 + v2)
,
r − s
p+ q

:=
2(v + u)(1− uv)

4− (1 + u2)(1 + v2)
, p+ q − r = s (17)

These conditions ensure that α, β, µ, x1, x2 and x3 are all rational. This is an important consequence of the Chern

number restrictions on M . As it turns out, the authors of [13] show that l−1

2π σ (as per the de�nition in (10)) is a
connection on M if we treat M ↪→ M/U(1) as a U(1) bundle. Since this is independent of the choice of U(1) quotient
(the quotient is completely described by the metric h of (10)) and since line bundles over S2×S2 are classi�ed by Chern
Classes in H2(S2 × S2;Z) ([17], �3.1), we have implicit restrictions on the two parameters α, β. Moreover, if we assume
that we don't know the di�eomorphism R5 → R5 that sends µ to unity.13 Given this disclaimer, here is the relationship
between u, v and α, β, µ, x1, x2, x3, x3:

α = 1− 1

4
(1 + u)(1 + v), β = 1− 1

4
(1− u)(1− v), µ =

1

16
(1− u2)(1− v2)

x1 =
1

4
(1 + u)(1− v), x2 =

1

4
(1− u)(1 + v), x3 = 1 (18)

Finally, we can relate the moduli ai, bi, ci of the Killing Vectors to u, v [19]:

a1 =
(1 + v)(3− u− v − uv)

(v − u)[4− (1 + u)(1− v)]
a2 = − (1 + u)(3− u− v − uv)

(v − u)[4− (1− u)(1 + v)]

b1 =
(1− u)(3 + u+ v − uv)

(v − u)[4− (1 + u)(1− v)]
b2 = − (1− v)(3 + u+ v − uv)

(v − u)[4− (1− u)(1 + v)]
(19)

c1 = − 2(1− u)(1 + v)

(v − u)[4− (1 + u)(1− v)]
c2 =

2(1 + u)(1− v)

(v − u)[4− (1− u)(1 + v)]

Recall that the goal of this thesis is to study the one-form spectrum of a slightly simpler object, the Sasaki-Einstein
metrics Y p,q. Given these quite complicated expressions, it will be wise to restrict our initial scope to a speci�c choice
of p, q. The �rst choice of p, q, p = q = 1 is simply the homogeneous metric on S2 × S3; this space is known as T 1,1

and it's spectrum is well-established [15, 27]. The �rst non-trivial manifold is Y 2,1 which is an irregular Sasaki-Einstein
manifold � that is, the orbits of one of the allowable U(1) actions is dense in Y 2,1. In general, note that the metric
in the form (10) is invariant has U(1) × U(1) × U(1) isometries. However, if placed in the original form from [13], one
can show that there is actually an graded isometry group isomorphic to SU(2)×Z2 ×U(1)×U(1). For completeness, we
present this metric:

gSparks(∂θ, ∂φ, ∂y, ∂ψ, ∂α) =
(1− cy)

6
(dθ2 + sin2 θdφ2) +

1

w(y)q(y)
dy2 +

q(y)

9
[dψ − cos θdθ]2

+ w(y)

[
dα+

ac− 2y + y2c

6(a− y2)
[dψ − cos θdφ]2

]
(20)

where we have,

w(y) =
2(a− y2)

1− cy

q(y) =
a− 3y2 + 2cy3

a− y2

0 ≤ θ ≤ π, 0 ≤ φ, ψ ≤ 2π, y1 ≤ y ≤ y2, y < 1, 0 ≤ α ≤ 2π`

where y1, y2 are roots of the cubic q(y) and due to symmetry considerations ` = q

3q2−2p2+p
√

4p2−3q2
. For reasons

explained on page 3 of [13], we are forced to restrict a ∈ (0, 1). From this de�nition, it is apparent that ψ, α have U(1)
isometries. However, note that one can rewrite the expressions for θ, φ in terms of the round metric on S3, so that θ
has an SU(2) isometry. When one rewrites (20) in terms of the Maurer-Cartan forms of SU(2), it is apparent that there
is a U(1) right action (from the Killing Vector ∂φ) and an SU(2) left action (derived from the Killing Vector ∂θ).

13This is a good assumption, at least based on the scant e�orts at numerical computation related to these manifolds. For instance in the
Master's Thesis [19], the author notes that he could not �nd a closed form di�eomorphism (or even an approximation) using Mathematica.
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4.3 The Scalar Laplacian

The Scalar Laplacian (i.e. the Laplacian-Beltrami Operator on Functions C∞(M)) of the Y p,q manifolds has been
studied in [19, 20, 25]. Unfortunately, we have two metrics to deal with, (10), (20). The solutions of (20) are a bit harder
to elucidate, but they will be discussed in this section. From �4.3.1 onwards, we will solely use (10) simply because it is
easier to work with. Using separation of variables, the authors were able to deduce that harmonic functions associated
to this operator (up to a scalar multiple) for (20) are of the form [20],

ΨSparks(y, θ, φ, ψ, α) = exp

(
i

[
Nφφ+Nψψ +

Nα
`
α

])
R(y)Θ(θ) (21)

The expressions for R(y),Θ(θ) are a bit complicated and require a more delicate analysis than the angular solutions.
The authors make many analogies to the solutions of the non-relativistic, time-independent, Schrödinger Equation and
consider R(y) to be the "radial" function for Y p,q and Θ(θ) to be the "angular" function for Y p,q. These analogies
are quite valid since we are dealing with a manifold that is di�eomorphic to S2 × S3 and we can rewrite our metric in
terms of the Maurer-Cartan forms on S3. In fact, the Θ equation, while not explicitly known, is an eigenfunction of the
Casimir operator K̂ of SU(2), which has the coordinate expression:

K̂ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

(
∂

∂φ
+ cos θ

∂

∂ψ

)2

+

(
∂

∂ψ

)2

(22)

and as per the physics convention we have K̂Θ(θ) = −L(L+ 1)Θ(θ), L ∈ Z. It turns out that the ordinary di�erential
equation for R(y) obtained via separation of variables is in fact Heun's equation, an equation of Fuchsian-type with four
regular singularities at y = y1, y2, y3,∞. The explicit solution will be discussed in the next section after we write the
Ordinary Di�erential Equations for each variable.

4.3.1 The Scalar Laplacian in Coordinates

Without further ado, the Scalar Laplacian ∆(5) in coordinates (with regard to the metric (10)) is [19]:

∆(5) →
4

ρ2

∂

∂x

(
∆x

∂

∂x

)
+

4

ρ2

∂

∂y

(
∆y

∂

∂y

)
+

∂2

∂τ2

+
α2β2

ρ2∆x

(
(β − x)

β

∂

∂φ
+

(α− x)

α

∂

∂ψ
− (α− x)(β − x)

αβ

∂

∂τ

)2

+
α2β2

ρ2∆y

(
(1 + y)

β

∂

∂φ
− (1− y)

α

∂

∂ψ
− (α− β)(1− y2)

2αβ

∂

∂τ

)2

(23)

where ∆y := (1− y2)∆θ.
While these coordinates are slightly di�erent that those in , the only change in the resulting eigenfunction will arise

in di�erent normalization constants (i.e. the process of de�ning Ψ so that ‖Ψ‖L2(M) = 1) with the eigenfunctions of
(23) having normalization constants that depend on α, β, ρ as opposed to a and c. Note that we can simplify (23)
signi�cantly if we express ∆y,∆x in terms of their roots. That is, if x1, x2, x3 are the roots of ∆x and y1, y2, y3 are the
roots of ∆y (see (11)), the metric becomes [19]:

∆(5) →
∂2

∂τ2
+

4

ρ2

∂

∂x

(
∆x

∂

∂x

)
+

∆x

ρ2

(
1

(x− x1)
v1 +

1

(x− x2)
v3 +

1

(x− x3)
v5

)2

+
4

ρ2

∂

∂y

(
∆y

∂

∂y

)
+

∆y

ρ2

(
1

(y − y1)
v2 +

1

(y − y2)
v4 +

1

(y − y3)
v6

)2

(24)

The separable solutions in these coordinates are quite similar to those in (4.3.1) except that we now have lost the
angular function Θ and we have replaced it with another solution to a Heun's Di�erential Equation. Explicitly, we have
the eigenfunction,

Ψ(τ, φ, ψ, x, y) = exp (i [Nττ +Nφφ+Nψψ])F (x)G(y) (25)

where F,G are de�ned by the Heun's Di�erential Equations,

d2F

dx2
+

(
1

(x− x1)
+

1

(x− x2)
+

1

(x− x3)

)
dF

dx
+QxF = 0 (26)

d2G

dy2
+

(
1

(y − y1)
+

1

(y − y2)
+

1

(y − y3)

)
dF

dy
+QyF = 0 (27)
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where we have,

Qx =
1

∆x

(
µx −

1

4
Ex−

3∑
i=1

α2
i

x− xi
d∆x

dx
(xi)

)
, Qy =

1

Hy

(
µy −

1

4
Ey −

3∑
i=1

β2
i

y − yi
dG

dy
(yi)

)
(28)

αi = −1

2
(aiNφ + biNψ + ciNτ ), β1 =

1

2
Nφ, β2 =

1

2
Nψ, β3 =

1

2
(Nτ −Nφ −Nψ) (29)

Hy = (y − y1)(y − y2)(y − y3), µx =
1

4
C − 1

2
Nτ (αNφ + βNψ) +

1

4
(α+ β)N2

τ (30)

µy =
1

2(β − α)

(
−C +

(
α+ β

2

)
E + 2(αNφ + βNψ)Nτ − (α+ β)N2

τ

)
(31)

To do:

• Explain Heun's Di�erential Equation

• Show the construction of the Heun Function

4.3.2 The Spectrum of the Scalar Laplacian

To be completed � Requires the Heun Function

4.4 The Hodge-de Rham Laplacian for One-Forms in coordinates

The �nal piece of information that we need to state the problem is the Hodge-de Rham Laplacian on n-forms,
∆n
HdR = dn+1δn+1 +δndn, where di is the exterior derivative on i-forms and δi is the formal adjoint (often times denotes

d∗) of d under the inner product induced by the Hodge Star operator. Due to the unwieldiness of the above equations,
we will only consider ∆1

HdR.

5 Problem Statement
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